Kancijan, Matija

Undergraduate thesis / Završni rad

2022

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: **University North / Sveučilište Sjever**

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:122:071685

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-10

Repository / Repozitorij:

University North Digital Repository

Završni rad br. 441/GR/2022

UTJECAJ POTRESA NA STABILNOST KOSINA

Matija Kancijan matični broj: 2843/336

Varaždin, ožujak 2022.

Odjel za Graditeljstvo

Završni rad br. 441/GR/2022

UTJECAJ POTRESA NA STABILNOST KOSINA

Student

Matija Kancijan matični broj: 2843/336

Mentor

prof. dr. sc. Božo Soldo

Varaždin, ožujak 2022. godine

Prijava završnog rada

Definiranje teme završnog rada i povjerenstva

stubil preddi	plomski struč	ni studij Graditeljstvo		•
PRISTUPNIK Ma	atija Kancijan		MATIENI BROJ 2843/336	
29. IV. 2022. KOLEGIJ Geomeha		KOLEGII Geomeha	anika II	
NASLOV RADA	Utjecaj potr	Utjecaj potresa na stabilnost kosina		
MASLOV RADA NA ENGL. JEZIKU MENTOR dr.sc	Impact of e	earthquakes on slope sta	zvanie redoviti profesor	
NASLOV RADA NA ENGL. JEZIKU MENTOR dr.sc članovi povjer	Impact of e	earthquakes on slope sta	zvanie redoviti profesor	
NASLOV RADA NA ENGL. JEZIKU MENTOR dr.sc članovi povjer	Impact of e	earthquakes on slope sta o doc.dr.sc. Goran Puž prof.dr.sc. Božo Soldo	ability ^{ZVANJE} redoviti profesor	
NASLOV RADA NA ENGL. JEZIKU MENTOR dr.sc članovi povjer	Minimpact of e	earthquakes on slope sta o doc.dr.sc. Goran Puž prof.dr.sc. Božo Soldo izv.prof.dr.sc. Bojan Đ	ability ^{zvanie} redoviti profesor Durin	
NASLOV RADA NA ENGL. JEZIKU MENTOR dr.sc članovi povjer	Impact of e Božo Soldo ENSTVA 1. 2 3.	arthquakes on slope sta o doc.dr.sc. Goran Puž prof.dr.sc. Božo Soldo izv.prof.dr.sc. Božo Soldo doc.dr.sc. Matija Oreš	ability ^{zvanje} redoviti profesor Durin šković	

Zadatak završnog rada

441/GR/2022

OPIS

• * * KC

Pod temom Završnog rada: "Utjecaj potresa na stabilnost kosina" predlaže se da se u radu obrade saznanja predmetne teme s naglaskom na metode proračuna: kvazistatička analizu stabilnosti pokosa i Newmarkovu analizu kliznog bloka:

4		11	V	0	n
	۰.	U	۷	0	v

- 2. VRSTE KOSINA PREMA MEHANIZMU GIBANJA
- 3. FIZIKALNI OPIS POTRESNOG DJELOVANJA NA KLIZIŠTU
- 4. KVAZISTATIČKA METODA STABILNOSTI
- 5. NEWMARKOV KLIZNI BLOK
- 6. PRIMJERI PRORAČUNA UTJECAJA POTRESA NA STABILNOST KOSINA
- 7. ZAKLJUČAK

LITERATURA

		atoubulka HRUAAS	0
ZADATAK URUČEN	10.05.2027	POTPIS M	NTORA SOLCOO
		SVRUČILIŠTE SVRUČILIŠTE SVCUČILIŠTE SI	

Predgovor

Zahvaljujem mentoru prof. dr. sc. Boži Soldi na stručnim savjetima i vodstvu tijekom izrade ovog završnog rada.

Zahvaljujem profesorici Đini Bobetić na lektoriranju ovog završnog rada.

Također, zahvala obitelji i prijateljima na podršci tijekom studiranja na preddiplomskom studiju.

Matija Kancijan

Sažetak

Često se prilikom pojave potresa događaju klizišta, odnosno masa na kliznoj plohi počinje gubiti svoju dosadašnju posmičnu čvrstoću te nastaje pomak. Newmarkova metoda kliznoga bloka daje sposobnost kako bi se predvidjeli pomaci koje će određena magnituda potresa izazvati, te su izazvani pomaci ulazni parametri za projektiranje stabilnosti kosina.

Ključne riječi: kvazistatička metoda, Newmarkova metoda, klizni blok, potresno djelovanje, pomaci kliznog tijela

Summary

Landslides often occur when an earthquake occurs, i.e. the mass on the sliding surface begins to lose its current movable strength, and a displacement occurs. Newmark's sliding block method give the ability to predict the displacements that a certain earthquake magnitude will cause, and the induced displacements are the input parameter for the design of slope stability.

Key words: quasi-static method, Newmark's method, sliding block, seismic action, sliding body displacements

Popis korištenih oznaka

$\overrightarrow{F_{v}}$	vanjska vučna sila
$\vec{F}_{tr.st.}$	sila statičkog trenja
$\vec{F}_{tr.kin.}$	sila kinetičkog trenja
Ĝ	sila teža
\vec{T}	težina
\overrightarrow{R}	reakcija podloge
$\overrightarrow{F_{el}}$	elastična sila opruge
A	amplituda
r	konstanta trenja
$ec{ u}$	brzina, brzina mase oscilatora
ā	akceleracija
т	masa
F_s	faktor sigurnosti
с	kohezija
Ī	linearni impuls sile
t	vrijeme
φ	kut unutarnjeg trenja; fazna konstanta
μ_s	statički faktor trenja
μ_k	kinematički faktor trenja
Т	težište tijela
\vec{T}	težina
k	konstanta opruge
a_h	horizontalna komponenta djelovanja potresa
a_v	vertikalna komponenta djelovanja potresa

ω	kružna frekvencija
S	pomak
k_h	koeficijent horizontalnog ubrzanja
k_v	koeficijent vertikalnog ubrzanja
γ	obujamska težina
Ν	normalna sila
Т	posmična sila
σ	normalno naprezanje
τ	posmično naprezanje
a_c	granična akceleracija
\vec{p}_n	sila pobude
u	relativno gibanje

SADRŽAJ

1.	UVOD	1
2.	VRSTE KOSINA PREMA MEHANIZMU GIBANJA	3
2. 2.	 Klizanje Tečenje 	4 7
2. 2.	 Složena klizanja Odron Drouttorio 	9 10
2.	6. Osnovne informacije o proračunu i faktoru sigurnosti klizišta	11
3.	FIZIKALNI OPIS POTRESNOG DJELOVANJA NA KLIZIŠTU	14
3.	1. Klizanje bloka na kosini	14
3.	2. Prigušeno titranje	
3. 3.	 Linearni impuls vremenski promjenjive sile koja djeluje na pravcu Sustavi s više stupnjeva slobode 	24 26
5.		
4.	KVAZISTATIČKA METODA STABILNOSTI	30
5.	NEWMARKOV KLIZNI BLOK	38
6.	PRIMJERI PRORAČUNA UTJECAJA POTRESA NA STABILNOST KOSIN	A48
7.	ANALIZA DOBIVENIH REZULTATA	56
7.	1. Potresno djelovanje na kosini sa nesaturiranim tlom	56
7.	2. Potresno djelovanje na kosini sa potpuno saturiranim tlom	59
8.	ZAKLJUČAK	63
9.	LITERATURA	64
10.	POPIS SLIKA	66
11.	POPIS TABLICA	71

1. UVOD

Svaka nestabilnost na kosini uzrokuje pojavu klizišta koje se događa zbog pada čvrstoće ili zbog porasta posmičnog naprezanja, a moguća je i kombinacija događaja. Čvrstoća je funkcija normalnog efektivnog naprezanja, a posmično naprezanje razlika normalnog naprezanja i pornog tlaka, stoga postoje razne mogućnosti koje dovođe do nestabilnosti. Nakon što dođe do poremećaja ravnoteže, pojavljuju se vrlo mali, teško vidljivi pomaci, odnosno puzanja. Kada se brzina kretanja mase značajno poveća, ta pojava naziva se klizanje [1].

Poznato je da je jedan od utjecaja na smanjenje stabilnosti padina potres. Kod nastanka potresa na svaki element djeluju horizontalne sile.

Povećanje seizmičkih pobuda na površini terena je posljedica razlike u impedanciji između površinskih slojeva tla i osnovne stijene, koja predstavlja otpor titranju čestica tla. Na amplifikaciju (povećanje) seizmičke pobude utječe i prigušenje amplitude valova uzrokovane neelastičnošću i heterogenošću sustava [2]. Također je poznato da su padine na predmetnim lokacijama i u statičkom djelovanju blizu granice ravnoteže pogotovo u vremenu većih oborina (padanje kiše i otapanja snijega). U dinamičkim uvjetima nastanka potresa povećavaju se opterećenja, smanjuje se posmična čvrstoća i nastaju pomaci. Nastankom potresa razvijaju se pukotine, a oborine (padanje kiše i otapanja snijega) lakše saturiraju tlo. U potresima koji su nastajali u Hrvatskoj (Zagreb, Petrinja) uzrokovali bi daleko vidljivija - veća oštećenja da su se dogodila u vrijeme veće saturacije, odnosno u vrijeme nastanka potresa bila je relativno niska saturacija tla [3]. Potres je značajni faktor opterećenja kosina: u svjetskim razmjerima, Hrvatska se nalazi u vrlo aktivnoj zoni [3].

Poznati su primjeri iz svijeta gdje je potres imao razornu moć i pokrenuo cca 3.500 klizišta (Japan/Kumamoto; potres magnitude 7,0; 2016. godine) (Slika 1.1.).

Slika 1.1.: Primjeri nastanka klizišta za vrijeme potresa u Japanu [3]

Primjer iz Hrvatske je veliki potres u Hrvatskoj Kostajnci koji je aktivirao klizišta (Slika 1.2.).

Slika 1.2.: Klizišta u Hrvatskoj Kostajnici [3]

U radu je predstavljena kvazistatička metoda koja kao rezultat pokazuje samo vrijednost kvazistatičkog faktora sigurnosti umanjenog za djelovanje kvazistatičkih sila. Analizom potresnog djelovanja na klizištu, u obzir se uzima samo jedna, horizontalna komponenta djelovanja potresa, u radu se analizira i utjecaj vertikalne komponente u omjeru sa horizontalnom na faktor sigurnosti kod nesaturiranog i potpuno saturiranog tla. Kako je cilj dobiti pomake klizne plohe tijekom potresnog djelovanja, koristi se Newmarkova metoda. Njegova se metoda sastoji u traženju granične akceleracije koja pak nije jednaka horizontalnom koeficijentu djelovanja kao kod kvazistatičke metode, već se izračunava posebno preko statičkog faktora sigurnosti i nagiba kosine.

2. VRSTE KOSINA PREMA MEHANIZMU GIBANJA

Kosine se prema mehanizmu gibanja njihove mase dijele na:

- 1. klizanje
- 2. tečenje
- 3. složeno kretanje
- 4. odron
- 5. prevrtanje

Slika 2.1.: Osnovni geometrijski elementi klizišta [1]

2.1. Klizanje

Slika 2.2.: Shematski prikaz rotacijskog klizanja [4]

Klizanje mase događa se u zonama sa slabom posmičnom čvrstoćom uzrokovana prirodnim ili čovjekovim utjecajem. Svako klizište ima otvorene poprečne pukotine na čelu klizišta. Ovakva vrsta mehanizma rotacijskog klizanja, najčešća je u homogenim glinovitim materijalima.

Pored prikazanog rotacijskog klizanja (Slika 2.2.), postoji i translacijsko klizanje (Slika 2.3.) kod kojeg masa kliže paralelno s površinom kosine, no u manjoj dubini nego kod rotacijskog klizanja, približavajući se prema nožici kosine, ta se dubina klizanja smanjuje. Primjeri takvih klizanja javljaju se u raspucaloj prekonsolidiranoj glini na diluvijalnim terasama Zagrebačke gore i na obroncima od rastrošena lapora u Zagorju [5].

Slika 2.3.: Shematski prikaz translacijskog klizanja [4]

Prikaz translacijskog klizanja može se prikazati i jednostavnije pomoću vektora koji izlaze iz svake točke klizne mase te su usmjereni paralelno s kliznom plohom (Slika 2.4.),

Slika 2.4.: Translacija vektora iz točaka

dok se prikaz rotacijskog klizanja može prikazati kao točke koje rotiraju oko osi rotacije (Slika 2.5.).

Slika 2.5.: Rotacija točaka oko osi rotacije

Primjeri klizanja kosina prikazani su na slikama 2.6, 2.7. i 2.8.

Slika 2.6.: Primjer rotacijskog klizanja [4]

Slika 2.7.: Translacijsko klizanje aktivirano 2001. u Beatton River Valley, British Columbia, Canada [4]

Slika 2.8.: Polagano puzanje mase koje uzrokuje klizanje [3]

2.2. Tečenje

Slika 2.9.: Shematski prikaz tečenja kosine [4]

Tečenje je kretanje u materijalu niz kosinu pri kojem su raspored brzine i pomak u masi slični onima u viskoznoj tekućini [5].

Zbog nedovoljne istraženosti ovakve vrste mehanizma kretanja, pretpostavlja se da je u tijelu mase povećan broj finog materijala (Slika 2.10.), a kako se povećava brzina mehanizma, tako masa, budući da je od finog materijala, paralelno klizi niz kosinu [5].

Slika 2.10.: Tečenje niz kosinu

Slika 2.11.: Tečenje niz kosinu [4]

2.3. Složena klizanja

Složena klizanja nastaju kao posljedica razvoja početnog klizanja na nekoj padini. Uzastopna rotacijska klizanja (Slika 2.12.), posljedica su degradacije na kosinama od prekonsolidirane raspucale gline. Klizište se širi postepeno, najčešće od stope retrogresivno uz kosinu [5].

Kada je rezidualna čvrstoća materijala manja od maksimalne, slom može nastati postepeno. On se pojavljuje najprije u nekom žarištu u kojem je čvrstoća najmanja ili deformacija najveća [5].

2.12.: Duboko rotacijsko klizanje [6]

Višestruka retrogresivna klizanja rotacijskog ili translacijskog tipa mogu nastati kad postoji zajednička ploha različitih osobina (Slika 2.13.). Uzrokuje ih često erozija stope na strmim padinama kada sloj veće čvrstoće na površini sprečava pojavu naknadnih plitkih klizanja [5].

2.13.: Višestruko retrogresivno klizanje [6]

2.4. Odron

Slika 2.14.: Shematski prikaz odrona [4]

Odron je jedan od najčešćih i najštetnijih tipova kretanja mase. Odron započinje odvajanjem tla ili stijene duž površine na kojoj je došlo do smanjenja posmičnog naprezanja. Materijal koji se odronio uglavnom pada poskakivanjem ili kotrljanjem (Slika 2.15.), te kao takav može biti opasan ukoliko pada na prometnice, što je čest slučaj u stjenovitim usjecima prometnica, te se takvi odroni štite različitim metodama.

Padovi su nagli te materijal koji pada udara u donju površinu pod kutom manjim od kuta pada. Masa materijala može se pri tome udaru slomiti te se kotrljati po padini sve do nailaska na ravnu podlogu kada mu se smanjuje kinetička energija.

Slika 2.15.: Fizikalni opis odrona [7]

2.5. Prevrtanje

Slika 2.16.: Shematski prikaz prevrtanja [4]

Slom prevrtanjem nastaje uslijed sloma slojeva stijenske mase nagnutih u kosinu po diskontinuitetima subhorizontalnog položaja u odnosu na položaj slojeva (Slika 2.17.). Razlikuje se primarno prevrtanje uzrokovano gravitacijom i naprezanjima u stijenskoj masi te sekundarno prevrtanje uzrokovano drugim faktorima [8].

Slika 2.17.: Primjer prevrtanja

Slika 2.18.: Shematski prikaz prevrtanja

2.6. Osnovne informacije o proračunu i faktoru sigurnosti klizišta

Za zatečeno stanje tla pri kojem dolazi do klizanja s visokom razinom vode i velikim nagibom kosine uz odabrane parametre posmične čvrstoće tla: kut unutarnjeg trenja φ i kohezije c, može se provesti jednostavan proračun stabilnosti [1]:

Slika 2.19.: Prikaz djelovanja sila na izdvojenu lamelu [1]

$$E_1 = E_2$$
 (2.1.)

- $N = W \cdot \cos \beta = \gamma \cdot a \cdot z \cdot \cos \beta \tag{2.2.}$
- $T = W \cdot \sin \beta = \gamma \cdot a \cdot z \cdot \sin \beta \tag{2.3.}$

$$\sigma_{N} = \frac{N}{\frac{a}{\cos\beta}} = \gamma \cdot z \cdot \cos^{2}\beta$$

$$(2.4.)$$

$$T = \frac{T}{\frac{1}{\cos\beta}} = \gamma \cdot z \cdot \sin\beta \cdot \cos\beta$$

$$\tau = \frac{a}{\cos\beta} = \gamma \cdot z \cdot \sin\beta \cdot \cos\beta$$
(2.5.)

za koheziju c=0

$$\tau_f = \sigma_N \cdot tg \ \varphi \tag{2.6.}$$

$$F_{s} = \frac{\tau_{f}}{\tau} = \frac{\gamma \cdot z \cdot \cos^{2} \beta \cdot tg \,\varphi}{\gamma \cdot z \cdot \sin \beta \cdot \cos \beta} = \frac{tg \,\varphi}{tg \,\beta}$$
(2.7.)

za koheziju
$$c > 0$$

$$\tau_f = c + \gamma \cdot z \cdot \cos^2\beta \cdot tg \,\varphi \tag{2.8.}$$

$$F_s = \frac{\tau_f}{\tau} = \frac{c + \gamma \cdot z \cdot \cos^2 \beta \cdot tg \,\varphi}{\gamma \cdot z \cdot \sin \beta \cdot \cos \beta} \tag{2.9.}$$

Slika 2.20.: Primjer klizne plohe [9]

Iz izraza (2.7.) i (2.9.) slijedi da na kliznoj plohi nije došlo do sloma tla, ako je $F_S > 1,0$, a slom tla nastupa za slučaj F < 1,0. Određivanjem faktora sigurnosti utvrđuje se stabilnost jednog zamišljenog ili stvarnog kliznog tijela. U slučaju projektiranja kosina (primjerice nasip za izgradnju ceste), klizno tijelo nije unaprijed određeno, već se traži ono s najmanjim faktorom sigurnosti.

3. FIZIKALNI OPIS POTRESNOG DJELOVANJA NA KLIZIŠTU

3.1. Klizanje bloka na kosini

Promatranjem krutog tijela mase *m* koje miruje na kosoj podlozi nagiba φ koja je dio ravnine $\omega - \omega$.

Dovede li se krutom tijelu neka vanjska sila $\vec{F_v}$, koja će to tijelo dovesti u stanje gibanja u odnosu na kosu podlogu u ravnini $\omega - \omega$, te povećavajući iznos $|\vec{F_v}|$, sile $\vec{F_v}$, povećat će se i iznos $|\vec{F}_{tr.st.}|$ sile statičkog trenja $\vec{F}_{tr.st.}$, suprotnog smjera, koje je održavalo kruto tijelo u ravnoteži sve do nastupanja vanjske sile $\vec{F_v}$, prikazane paralelno s kosinom. Pojavom klizanja krutog bloka premašuje se iznos $|\vec{F}_{tr.st.max.}|$ sile $\vec{F}_{tr.st.max.}|$ sile $\vec{F}_{tr.st.max.}|$ sile $\vec{F}_{tr.st.max.}$ te statičko trenje prelazi u kinetičko, pri čemu je iznos $|\vec{F}_{tr.st.max.}|$ sile kinetičkog trenja $\vec{F}_{tr.st.max.}$ te statičko trenje prelazi u kinetičkog trenja $\vec{F}_{tr.st.max.}$. Pored vanjske sile $\vec{F_v}$, na kruto tijelo na kosini djeluje sila teža \vec{G} čiji je vektor s hvatištem, odnosno vezani vektor, u težištu T (centru mase) tijela koji se rastavlja na međusobno okomite komponente, usporedne s osima prikazanim lokalnim koordinatnim sustavom, vertikalnu $\vec{G_y}$ i horizontalnu $\vec{G_x}$, prikazane u skalarnom obliku. Kruto tijelo na podlogu djeluje težinom \vec{T} , jednakoj djelovanju sile teže \vec{G} ($\vec{T}=\vec{G}$).

Iz prikazanog dijagrama sila na slici 3.1., prema Prvom Newtonovom zakonu, tri sile (sila teža \vec{G} , elastična sila reakcije podloge \vec{R} i sila statičkog trenja $\vec{F}_{tr.st.max.}$), grafički čine poligon sila, budući da je njihov zbroj jednak nuli, prikazan na slici 3.2. neposredno pred nejednoliko ubrzano gibanje.

Slika 3.1.: Prikaz sila na klizni blok u stanju mirovanja

Slika 3.2.: Poligon sila

Kako je prethodno navedeno, klizanje bloka na kosini nagiba φ dogodit će se kada iznos $|\vec{F}_v|$ vučne vanjske sile \vec{F}_v premaši iznos $|\vec{F}_{tr.st.max}|$ maksimalne sile trenja $\vec{F}_{tr.st.max}$. Gibanje tijela niz kosinu događa se pod djelovanjem sile teže \vec{G} te će se nakon početka gibanja tijelo gibati nejednoliko ubrzano, u ovome slučaju u pozitivnom smjeru osi x prikazanoga lokalnoga koordinatnoga sustava. Budući da se blok giba po pravcu usporednim s kosinom, u smislu djelovanja sile zbog koje se giba, može se primijeniti Drugi Newtonov zakon dinamike koji kaže da je brzina promjene količine gibanja:

$$\vec{p} = m \cdot \vec{v} \tag{3.1.}$$

tijela proporcionalna sili \vec{F} koja djeluje na to tijelo, u ovome slučaju u pozitivnom smjeru x lokalnog koordinatnog sustava:

$$\vec{F}_{RN} = \frac{d \cdot (m \cdot \vec{v})}{dt}$$
(3.2.)

gdje RN predstavlja vektorsku sumu svih Newtonovskih sila koje djeluju na masu m tijela:

$$\overline{F_{RN}} = \sum_{i=1}^{n} \vec{F}_{N,i} .$$
(3.3.)

Kako količina gibanja \vec{p} ovisi o vremenu, tako će se i derivirati, pa je prva derivaciju \vec{p} po vremenu t :

$$\frac{d\vec{p}}{dt} = \frac{d\cdot(m\cdot\vec{v})}{dt} = \frac{dm}{dt} \cdot \vec{v} + m \cdot \frac{d\vec{v}}{dt} = \vec{F}_{RN}$$
(3.4.)

15

Kako masa m tijela ne ovisi o vremenu t, to jest ne mijenja se s vremenom, izraz se pojednostavnjuje na:

$$\vec{F}_{RN} = \frac{d\vec{p}}{dt} = m \cdot \vec{a} \tag{3.5.}$$

Inicira li se potresna sila čiji se iznos mijenja s vremenom na tijelo stalne mase m, pretpostavljajući da pravac nosilac i smjer sile ostaju isti, tijelo mase m počinje se gibati te njezin vektor ubrzanja $\vec{a}(t)$ leži na tome pravcu i ima smjer sile, dok se njezin iznos mijenja s vremenom. Ovakva spoznaja o gibanju tijela, gdje se tijelo mase m počinje gibati, potrebna je za daljnje promatranje ponašanja klizanja realnog kliznog tijela određene mase m niz kosinu.

Slika 3.3.: Vektor ubrzanja u smjeru inicirane sile

U realnom stanju klizanja krutog tijela po podlozi javlja se i bezdimenzionalni koeficijent proporcionalnosti kinetičkog trenja μ_k karakterističan za svaku površinu zasebno, čiji je jedini pravi način za njegovo određivanje eksperiment, dok formula ne postoji [18].

U geomehanici često se koristi izraz kut unutarnjeg trenja nekog materijala φ koji je posljedica trenja među česticama materijala na zamišljenoj infinitezimalnoj kliznoj plohi koja se javlja između čestica. Takvom pretpostavkom infinitezimalne klizne plohe, može se zaključiti da se kut unutarnjeg trenja može izmjeriti nasipavanjem određenog materijala okomito na plohu u negativnom smjeru y-osi postavljenoga lokalnoga koordinatnoga sustava. Rezultat mjerenja φ bit će različit za svaku vrstu materijala. Također, bitno značenje kuta unutarnjeg trenja je to da je koeficijent statičkog trenja μ_s jednak tangensu kuta φ kod kojega će blok početi klizati, to jest kod kojega će statičko trenje preći u kinetičko. Ova se tvrdnja može lako izvesti iz jednostavne i elementarne trigonometrije vraćajući se na početak analize sila na blok u stanju mirovanja [18].

Iz poligona sila na slici 3.2. može se zaključiti:

$$\sin \varphi = \frac{|\vec{F}_{tr.stat.max.}|}{|\vec{G}|} = \frac{\mu_s \cdot G_y}{G} = \frac{\mu_s \cdot G \cdot \cos \varphi}{G} = \mu_s \cdot \cos \varphi$$
(3.6.)

$$\sin\varphi = \mu_s \cdot \cos\varphi /: \cos\varphi \qquad (3.7.)$$

$$\mu_s = \frac{\sin\varphi}{\cos\varphi} \tag{3.8.}$$

Iz elementarne geometrije poznato je da je omjer $\frac{\sin y}{\cos x} = tg \varphi$, stoga se može pisati da vrijedi:

$$\mu_s = tg\,\varphi \tag{3.9.}$$

Slika 3.4.: Prikaz kuta unutarnjeg trenja

3.2. Prigušeno titranje

Promatra se spiralna opruga obješena na gredu određene krutosti k. Nakon što se objesi tijelo mase m, opruga se produljuje za vrijednost x_0 (Slika 3.5.). Kada tijelo miruje zbroj elastične sile opruge i sile teže jednak je nuli $\overrightarrow{F_{el}} + \overrightarrow{G} = 0$. Masi m, impulsom se sile \overrightarrow{I} predaje količina gibanja prema dolje, te se pod djelovanjem sile jednake zbroju elastične sile zavojnice $\overrightarrow{F_{el}}$, i sile teže \overrightarrow{G} , po isteku vremena t, nalazi udaljena x=0 od ravnotežnog položaja [18].

Slika 3.5.: Titranje mase na oprugi

Svaka trenutna algebarska vrijednost koordinate x(t) u proizvoljnom trenutku t naziva se elongacija oscilatora. Po isteku vremenskog intervala $\frac{T}{4}$ tijelo se zaustavlja udaljena – x(t) = -A od ravnotežnog položaja [18].

Pod djelovanjem sile jednake zbroju sile teže \overrightarrow{G} i elastične sile $\overrightarrow{F_{el}}$ rastegnute spiralne opruge, tijelo se počinje gibati nejednoliko ubrzano prema ravnotežnom položaju prolazeći u suprotnome smjeru [18]

$$x(t) = A\sin(\omega t + \varphi)$$
(3.10.)

gdje je:

x(t)- elongacija u trenutku t [m]

A- amplituda (maksimalna elongacija) koja se ne mijenja tijekom vremena zbog slobodnog titranja [m]

ω- kružna frekvencija [Hz]

 φ - fazna konstanta.

Slika 3.6.: Harmonička funkcija sinus

Međutim, samo u idealnim uvjetima harmonično titranje može trajati konstantno i imati stalnu amplitudu. Stvarno titranje koje se promatra ne titra konstantno, drugim riječima, kružna frekvencija neće opisivati brzinu osciliranja punoga kruga, odnosno potpunoga vala (2π) , već postoji otpor tome titranju, što je u slučaju klizanja bloka na kosini, sila trenja $\vec{F}_{tr.kin.}$ usmjerena suprotno od smjera klizanja bloka.

Slika 3.7. prikazuje stvarno titranje pri čemu se uočava amplituda koja se postupno smanjuje zbog svladavanja sile trenja.

Slika 3.7.: Prigušeno harmonijsko titranje

Želi li se matematički opisati prigušeno harmonijsko titranje, promatrat će se oscilator koji je u stanju ravnoteže te je i u skladu s Drugim Newtonovim zakonom gdje je zbroj svih newtonovskih sila $\overrightarrow{F_{RN}}$ koje djeluju na masu *m* utega, dakle sila teže $\overrightarrow{G} = m \cdot \overrightarrow{g}$ i elastične sile $\overrightarrow{F_{el}}$. Pored ovih sila uključuje se i sila trenja $\overrightarrow{F_{tr}}$ [17].

$$\overrightarrow{F_{RN}} = \overrightarrow{F_{el}} + \overrightarrow{F_{tr}} = -kx - r \cdot \overrightarrow{v} = 0$$
(3.11.)

gdje je:

 $\overrightarrow{F_{el}}$ – elastična sila

 \vec{F}_{tr} – sila trenja proporcionalna brzini gibanja mase ovješene o elastičnu oprugu

r – konstanta trenja

 \vec{v} – brzina mase oscilatora.

Slika 3.8.: Shematski prikaz prigušenog titranja

Primjeni li se Drugi Newtonov zakon, može se pisati:

$$m \cdot \vec{a} = \vec{F}_{el} + \vec{F}_{tr} \tag{3.12.}$$

Akceleracija se može pisati kao druga derivacija pomaka s po vremenu t:

$$m \cdot \frac{d^2 \cdot s}{d \cdot t^2} = \vec{F}_{el} + \vec{F}_{tr} \tag{3.13.}$$

Uvrste li se izrazi za elastičnu silu i silu trenja, te izraz za brzinu kao prvu derivaciju pomaka *s* po vremenu *t*, dobiva se:

$$m \cdot \frac{d^2 \cdot s}{d \cdot t^2} = -k \cdot x - r \cdot \frac{d \cdot s}{d \cdot t}$$
(3.14.)

Sredi li se gornji izraz, dobiva se:

$$\frac{d^2 \cdot s}{d \cdot t^2} + \frac{r}{m} \cdot \frac{d \cdot s}{d \cdot t} + \frac{k}{m} \cdot x = 0$$
(3.15.)

Uvedu li se oznake:

 $\frac{k}{m} = \omega_0^2 - \text{kružna frekvencija neprigušenih titranja oscilatora}$ $\frac{r}{m} = 2 \cdot \delta \text{, gdje je } \delta \text{ koeficijent prigušenja,}$ može se pisati:

$$\frac{d^2 \cdot s}{d \cdot t^2} + 2 \cdot \delta \cdot \frac{d \cdot s}{d \cdot t} + \omega_0^2 \cdot x = 0$$
(3.16.)

Dobivena je jednadžba koja je homogena diferencijalna jednadžba prigušenog harmoničkog oscilatora. Rješenje ovakve jednadžbe nalazi se rješenjem oblika:

$$x(t) = e^{\alpha \cdot t} /$$
(3.17.)

$$\alpha^{2} \cdot e^{\alpha \cdot t} + 2 \cdot \delta \cdot \alpha \cdot e^{\alpha \cdot t} + \omega_{0}^{2} \cdot e^{\alpha \cdot t} = 0 / : e^{\alpha \cdot t}$$
(3.18.)

$$\alpha^2 + 2 \cdot \delta \cdot \alpha + \omega_0^2 = 0 \tag{3.19.}$$

Rješavanjem ove kvadratne jednadžbe dobivaju se dva rješenja:

$$\alpha_{1,2} = -\delta \pm \sqrt{\delta^2 - \omega_0^2} \tag{3.20.}$$

Uvede li se frekvencija prigušenih titranja:

$$\omega = \sqrt{\omega_0^2 - \delta^2}; \, \delta < \omega_0 \tag{3.21.}$$

Rješenja kvadratne jednadžbe mogu se pisati kao:

$$\alpha_{1,2} = -\delta \pm i \cdot \omega \tag{3.22.}$$

Rješenja $\alpha_{1,2}$ dva su linearno nezavisna rješenja diferencijalne jednadžbe:

$$\frac{d^2 \cdot s}{d \cdot t^2} + 2 \cdot \delta \cdot \frac{d \cdot s}{d \cdot t} + \omega_0^2 \cdot x = 0$$
(3.23.)

Stoga, opće rješenje traži se u obliku:

$$x(t) = e^{-\delta \cdot t} \cdot (K_1 \cdot e^{i \cdot \omega \cdot t} + K_2 \cdot e^{-i \cdot \omega \cdot t})$$
(3.24.)

gdje su K_1 i K_2 kompleksne konstante.

Koristi li se transformacija:

$$e^{\pm i \cdot \omega \cdot t} = \cos(\omega \cdot t) \pm i \cdot \sin(\omega \cdot t)$$
(3.25.)

te zamjenom konstanti:

$$K_1 = c_1 + i \cdot c_1 \tag{3.26.}$$

$$K_2 = c_2 + i \cdot c_2 \tag{3.27.}$$

$$x(t) = e^{-\delta \cdot t} [(c_1 + ic_1) \cdot (\cos(\omega t) + i \cdot \sin(\omega t)) + (c_2 + ic_2) \cdot (\cos(\omega \cdot t) - i \cdot \sin(\omega t))]$$
(3.28.)

$$x(t) = e^{-\delta \cdot t} [(c_1 + ic_1) \cdot (\cos(\omega t) + i \cdot \sin(\omega t)) + (c_2 + ic_2) \cdot (\cos(\omega \cdot t) - i \cdot \sin(\omega \cdot t))]$$
(3.29.)

uzme li se samo realni dio rješenja:

$$x(t) = e^{-\delta \cdot t} \cdot \left((c_1 \cdot \cos(\omega \cdot t) - c_1 \cdot \sin(\omega \cdot t) + c_2 \cdot \cos(\omega \cdot t) + c_2 \cdot \sin(\omega \cdot t)) \right)$$
(3.30.)

Za rješenje može se uzeti samo jedna od kombinacija budući da vrijedi princip superpozicije:

$$x(t) = e^{-\delta \cdot t} \cdot \left((c_1 \cdot \cos(\omega \cdot t) + c_2 \cdot \sin(\omega \cdot t)) \right)$$
(3.31.)

Zamjenom realnih konstanti:

$$c_1 = A \cdot \sin \varphi_0 \tag{3.32.}$$

$$c_2 = A \cdot \cos \varphi_0 \tag{3.33.}$$

dobiva se:

$$x(t) = A \cdot e^{-\delta \cdot t} \cdot \left((\sin \varphi_0 \cdot \cos(\omega \cdot t) + \cos \varphi_0 \cdot \sin(\omega \cdot t)) \right)$$
(3.34.)

odnosno:

$$x(t) = A \cdot e^{-\delta \cdot t} \cdot \left((\sin(\omega \cdot t + \varphi_0)) \right)$$
(3.35.)

Dobiveno je stvarno rješenje diferencijalne jednadžbe, to jest ovisnost elongacije x(t) o proteklom vremenu *t*, gdje se amplituda $A(t) = A_0 \cdot e^{-\delta \cdot t}$, tijekom vremena *t*, eksponencijalno smanjuje.

Kod prigušenog titranja vrijedi da je kružna frekvencija $\omega = \sqrt{\omega_0^2 - \delta^2}$ manja od kružne frekvencije ω_0 slobodnog oscilatora, dok mu je period *T* veći od perioda *T*₀ slobodnog oscilatora.

3.3. Linearni impuls vremenski promjenjive sile koja djeluje na pravcu

Potresno djelovanje može se shvatiti kao vremenski promjenjiva sila koja nekoj masi m na nekoj kosini, djelovanjem potresne sile u infinitezimalnom vremenskom intervalu dt, daje impuls sile. Zbog pojednostavljenja, promatrat će se vremenski promjenjiva sila koja djeluje na pravcu, to jest neće se uzimati u obzir promjenjiva sila čije se hvatište giba u x, y i z koordinatama [18].

Ovakva impulsna pobuda važna je za daljnje razumijevanje akcelerograma, to jest akcelerogram se rastavlja na niz impulsa, što se može prikazati na način prikazan na slici 3.9.

Slika 3.9.: Prikaz infinitezimalne impulsne pobude

Daljnjim promatranjem ovisnosti elastične sile o vremenu i analiziranjem slike 3.9. izvodi se formula za impulsnu pobudu, to jest dolazi se do saznanja da površina ispod krivulje grafa prikazanog na slici 3.9. odgovara impulsu.

Iznos elastične sile F(t) povećava se s vremenom te se njegovo ubrzanje povećava tijekom vremena do maksimalne vrijednosti u nekom trenutku t'_1 , gdje su elastična sila i deformacija najveći [18].

U trenutku t'_1 , količina gibanja bila je jednaka nuli,

$$v(t'_1) = 0, p(t'_1) = m \cdot 0 = 0 \tag{3.36.}$$

sada se giba linearno po pravcu brzinom iznosa $v(t_2)$ količine gibanja,

$$p(t_2) = m \cdot v(t_2)$$
 (3.37.)

dakle iznos promjene količine gibanja mijenja se tijekom vremenskog intervala Δt .

Svaka infinitezimalna promjena dp, tijekom infinitezimalnoga vremenskoga intervala dt, bit će jednaka produktu iznosa elastične sile $F(t) = \left(\frac{dp}{dt}\right)$ koja djeluje u trenutku t i infinitezimalnog vremenskog intervala dt [18]

$$dp = F(t) \cdot dt = \left[\frac{dp(t)}{dt}\right] \cdot dt$$
(3.38.)

Ovakav dobiveni produkt $F(t) \cdot dt$, koji je jednak infinitezimalnoj promjeni dp iznosa količine gibanja $\vec{p} = m \cdot \vec{v}$, bit će jednak infinitezimalnoj promjeni dI iznosa vektorske fizičke veličine $\vec{l}(t)$, odnosno linearnoga impulsa sile.

Konačni iznos linearnoga impulsa sile $I(t_1, t_2)$ jednak je integralu:

$$I(t_1, t_2) = \int_{t_1}^{t_2} F(t) dt = \int_{p(t_1)}^{p(t_2)} dp = p(t_2) - p(t_1) = \Delta p(t_1 - t_2) = m \cdot [v(t_2) - v(t_1)]$$
(3.39.)

Znajući izraz za impulsnu pobudu, prema Drugome Newtonovome zakonu, može se zaključiti da vrijedi:

$$\vec{F}(t) = m \cdot \vec{a} \tag{3.40.}$$

Budući da je akceleracija \vec{a} prva derivacija brzine \vec{v} po infinitezimalnom vremenskom intervalu dt, može se pisati:

$$\vec{F}(t) = m \cdot \frac{d\vec{v}}{dt} = \frac{d(m \cdot \vec{v})}{dt}$$
(3.41.)

odnosno:

$$\vec{F}(t)dt = d\vec{I} = d(m \cdot \vec{v}) = d\vec{p}$$
 (3.42.)
3.4. Sustavi s više stupnjeva slobode

Kako bi se što realnije opisao neki sustav pod dinamičkim djelovanjem, modelira se sustav s više stupnjeva slobode, odnosno promatraju se gibanja, to jest pomaci mase u više vremenski promjenjivih koordinata [19].

Iz jednadžbi ravnoteže za svaku česticu i smjer odabranog stupnja slobode, mogu se odrediti diferencijalne jednadžbe gibanja za sustav s više stupnjeva slobode.

U nekoj točki (masi) mogu djelovati sljedeće vrste sila: -vanjske sile: \vec{p}_n -elastične sile: $\vec{f}_{n,el}$ -sile prigušenja: $\vec{f}_{n,pr}$ $f_{n,e}$

Slika 3.10.: Shematski prikaz djelovanja sila na točkastu masu

Prema Drugome Newtonovome zakonu:

$$\vec{F} = m \cdot \vec{a} \tag{3.43.}$$

odnosno, akceleracija je druga derivacija pomaka *š*, koji je također ovisan o vremenu *t*.

$$\vec{F} = m \cdot \frac{d^2 s}{d \cdot t^2} \tag{3.44.}$$

Rezultanta svih sila koje djeluju na masu ovisna je o vremenu pa se može pisati:

$$\vec{f}(t) = \vec{p}_n(t) - \vec{f}_{n,el.}(t) - \vec{f}_{n,pr}$$
(3.45.)

Predznak (-) govori kako su to sile koje se odupiru vanjskoj sili $\vec{p}_n(t)$, to jest suprotnoga su smjera.

Prema izrazu (3.45.) rezultantna sila $\vec{f}(t)$ bit će jednaka:

$$\vec{f}(t) = m \cdot \vec{s}(t) \tag{3.46.}$$

odnosno:

$$\vec{p}_n(t) - \vec{f}_{n,el.}(t) - \vec{f}_{n,pr.} = m \cdot \ddot{s}(t)$$
 (3.47.)

preglednije se može pisati:

$$m \cdot \ddot{s}(t) + \vec{f}_{n,pr.}(t) + \vec{f}_{n,el.}(t) = \vec{p}_n(t)$$
 (3.48.)

Iz izraza (3.11.) može se zaključiti kako je sila prigušenja oscilatora proporcionalna brzini njegovog gibanja \vec{v} , a kako je brzina \vec{v} prva derivacija pomaka \dot{s} , stoga je:

$$\vec{f}_{n,pr.}(t) = r \cdot \dot{s}(t)$$
 (3.49.)

gdje r predstavlja koeficijent viskoznog prigušenja, iz izraza (3.11.) to je trenje, općenito se uzima ono prigušenje koji troši energiju sustava [16], zbog kojeg se pojavljuje gušenje sustava (izraz 3.35.). Također, iz izraza (3.11.), elastična sila jednaka je: kx.

Uvrsti li se to u izraz (3.48.):

$$m \cdot \ddot{s}(t) + r \cdot \dot{s}(t) + k \cdot x = \vec{p}_n(t) \tag{3.50.}$$

Izraz (3.50.) predstavlja jednadžbu gibanja. To je diferencijalna jednadžba drugog reda s konstantnim koeficijentima.

Primjeni li se izraz (3.50.) na sustav s više stupnjeva slobode, primjerice dva stupnja slobode, dobiva se matrični izraz za svaku promatranu diskretiziranu masu *m*:

$$\begin{bmatrix} m_1 & 0\\ 0 & m_2 \end{bmatrix} \cdot \begin{bmatrix} \ddot{s}_1\\ \ddot{s}_2 \end{bmatrix} + \begin{bmatrix} \vec{f}_{1,pr.}\\ \vec{f}_{2,pr.} \end{bmatrix} + \begin{bmatrix} \vec{f}_{1,el.}\\ \vec{f}_{2,el.} \end{bmatrix} = \begin{bmatrix} \vec{p}_1\\ \vec{p}_2 \end{bmatrix}$$
(3.51.)

Razvije li se matrični izraz (3.51.), dobiva se sustav s dvije međusobno zavisne diferencijalne jednadžbe.

Izraz (3.51.) predstavlja dvije obične diferencijalne jednadžbe koje određuju pomake $s_1(t)$ i $s_2(t)$ na nekom idealiziranom sustavu, koji je izložen djelovanju vanjskih dinamičkih sila $\overrightarrow{p_1}(t)$ i $\overrightarrow{p_2}(t)$.

Budući da je vrlo složeno rješavati diferencijalne jednadžbe za sustave s više stupnjeva slobode, jednadžbe se transformiraju u modalne koordinate. Svaka jednadžba sadrži jedan oblik, period i prigušenje sustava, stoga se dinamički odgovor nekog sustava s više stupnjeva slobode piše kao [19]

$$s(t) = \sum_{n=1,2}^{N} \varphi_n \cdot q_n(t)$$
 (3.52.)

gdje je:

 φ_n - ekstremna ordinata koja ne ovisi o vremenu t

 $q_n(t)$ - harmonijska funkcija iz izraza (3.1.), ordinata koja ovisi o vremenu t.

$$s(t) = \sum_{n=1,2}^{N} \varphi_n \cdot (A_n \cdot \cos(\omega_n t) + B_n \cdot \sin(\omega_n t))$$
(3.53.)

U harmonijskoj se funkciji pojavljuju trigonometrijski izrazi *cos i sin*, zato što masa nakon otpuštanja iz ravnoteže titra lijevo-desno.

Dakle, nepoznata će biti modalna koordinata $q_n(t)$.

Sada će jednadžba biti neovisna i imati oblik [19]

$$M_n \cdot \ddot{q}_n(t) + K_n \cdot \vec{q}_n(t) = \vec{p}_n(t)$$
(3.54.)

gdje je:

 $M_n - masa sustava$ $K_n - krutost sustava$ $\vec{p}_n - sila pobude$

te će vrlo dobro simulirati odgovor sustava $q_n(t)$ s jednim stupnjem slobode.

Slika 3.11.: Shematski prikaz sustava s dva stupnjeva slobode

Slika 3.12.: Shematski prikaz sustava s više stupnjeva slobode

Ovakav shematski prikaz kao na slici 3.12. prikazuje najjednostavnije poopćenje sustava sa više stupnjeva slobode te se svodi na sustav sa jednim stupnjem slobode za razliku od prikaza 3.11.

4. KVAZISTATIČKA METODA STABILNOSTI

Jedna od analiza stabilnosti kosina u seizmičkim uvjetima moguća je preko kvazistatičke analize. Potres se uvodi preko tzv. kuta otklona koordinatnih osi δ [3].

Slika 4.1.: Poligon sila kod djelovanja potresa [3]

Horizontalna akceleracija koja nastaje uslijed potresa a_H , izračunava se preko akceleracije sile teže:

$$tg \ \delta = \frac{Q}{G} = \frac{m \cdot a_H}{m \cdot g} = \frac{k_h \cdot g}{g} = k_h \tag{4.1.}$$

$$a_H = k_h \cdot g \tag{4.2.}$$

$$\delta = \operatorname{arc} tg \, k_h \tag{4.3.}$$

Slika 4.2.: Klizište pod djelovanjem potresnog opterećenja

Koeficijent horizontalnog ubrzanja k_h u praksi se kreće u rasponu: $0,05 \le k_h \le 0, 5$, odnosno kut otklona je u rasponu: $3^\circ \le \delta \le 26^\circ$ [3].

Slika 4.3.: Vrijednosti horizontalnih ubrzanja za grad Varaždin

Prikazan je primjer proračuna stabilnosti kosine bez potresa i s potresom s koeficijentom horizontalne akceleracije $k_h = 0,05$ (kut otklona $\delta = 3^\circ$) [3].

Za kosinu potopljenu vodom [3]:

Bez potresa	Djeluje potres
$c = 0 kN/m^2$; $\phi = 26^\circ$; $\gamma = 18,5 kN/m^3$;	$c = 0 \ kN/m^2$; $\phi = 26^\circ$; $\gamma = 18,5 \ kN/m^3$;
$\beta = 12; z = 4,0 m$	$\beta = (12 + 3); z = 4,0 m$
$F_{S} = \frac{\tau_{f}}{\tau} = \frac{c + \gamma' \cdot z \cdot \cos^{2} \beta \cdot tg\phi}{\gamma \cdot z \cdot \sin \beta \cdot \cos \beta}$	$F_{S} = \frac{\tau_{f}}{\tau} = \frac{c + \gamma' \cdot z \cdot \cos^{2}(\beta + \delta) \cdot tg\phi}{\gamma \cdot z \cdot \sin(\beta + \delta) \cdot \cos(\beta + \delta)}$
$F_{S} = \frac{\tau_{f}}{\tau} = \frac{0 + 9 \cdot 4 \cdot \cos^{2} 12 \cdot tg26}{18,5 \cdot 4 \cdot \sin 12 \cdot \cos 12}$	$F_{S} = \frac{\tau_{f}}{\tau} = \frac{0 + 9 \cdot 4 \cdot \cos^{2} 15 \cdot tg26}{18,5 \cdot 4 \cdot \sin 15 \cdot \cos 15}$
$F_S = 1,05$	$F_S = 0,85$

Djelovanje potresa značajno utječe na stabilnost kosina. Nastankom potresa smanjila se posmična čvrstoća što uzrokuje brža puzanja/klizanja [3].

Slika 4.4.: Primjeri pukotine u kolniku ceste nakon manje sanacije [3]

Preporuka je da se za mjere sanacije ovakvih primjera sa slike 4.4. nakon istražnih radova i izrade projekta iskopa dio trupa ceste, izgradi potporni AB ili gabionski zid uz adekvatnu drenažu (najjednostavnije rješenje jer se ne zadire u susjedne čestice, opterećenje se prenese u dublje otporne slojeve i ne opterećuje padinski segment ispod). Nadalje: izvedba sustava površinske odvodnje uz kontroliranu odvodnju s ceste, pročišćavanje i oblaganje kanala uz cestu; odvodnju uz cestu kanalima/rigolima. Na ovakvu pripremu mogu se izvesti radovi na izgradnji kolničke konstrukcije [3].

Vrijednost vertikalnog seizmičkog koeficijenta kod kvazistatičke metode najčešće je zanemarena. Povod takvom zanemarivanju je taj što vrijednost vertikalnog seizmičkog koeficijenta teži nuli te nema veliki utjecaj na krajnju vrijednost faktora sigurnosti, što možemo dokazati shematskim prikazom na slici 4.5.

Slika 4.5.: Smanjenje utjecaja vertikalnog seizmičkog koeficijenta s porastom udaljenosti od epicentra potresa

Faktor sigurnosti kosine s uključenom analizom vertikalne komponente zajedno sa horizontalnom računa se pomoću sljedećeg izraza:

$$F_{s,kv.} = \frac{c \cdot l_{ab} + [(W - F_v) \cdot \cos\beta - F_h \cdot \sin\beta] \cdot tg \,\varphi}{(W - F_v) \cdot \sin\beta + F_h \cdot \cos\beta}$$
(4.4.)

$$F_h = \frac{a_h \cdot W}{g} = k_h \cdot W \tag{4.5.}$$

$$F_{\nu} = \frac{a_{\nu} \cdot W}{g} = k_{\nu} \cdot W \tag{4.6.}$$

gdje je:

c- kohezija [kNm⁻²]

 l_{ab} – duljina ravne klizne plohe kosine [m]

W – težina kliznog tijela [kN]

 F_v - vertikalna potresna sila

 F_h - horizontalna potresna sila

Graf sa slike 4.6. govori o tome kako se kvazistatički faktor sigurnosti smanjuje sa povećanjem horizontalnog koeficijenta potresa. Kod najvećeg nagiba kosine od 25° koja ima najmanji faktor sigurnosti od 1,23, faktor će sigurnosti pasti sa ravnotežnog položaja na nestabilni sa faktorom sigurnosti $F_s < 1,0$. Mjera je da se kod takvih kosina sa većim nagibima kosine, povećaju faktori sigurnosti zbijanjem tla ili povećanjem kuta unutarnjeg trenja, kako bi djelujući potres manje smanjio faktor sigurnosti.

Slika 4.7.: Graf ovisnosti faktora sigurnosti o horizontalnom koeficijentu zajedno sa vertikalnim koeficijentom za različite nagibe kosina

Graf sa slike 4.7. govori o tome kako će utjecaj vertikalne komponente imati veći utjecaj na kosine sa manjim nagibom, dok će za kosine sa većim nagibom taj utjecaj biti manji zbog razmaka između krivulje sa uključenim horizontalnim koeficijentom i između krivulje sa uključenim horizontalnim i vertikalnim koeficijentom.

Stoga se često u projektiranju konstrukcija, pa tako i geotehničkih konstrukcija, u obzir uzima samo horizontalno ubrzanje, to jest odabire se koeficijent horizontalnog ubrzanja k_h .

Krajnje granično stanje, koje se općenito uzima u projektiranju geotehničkih konstrukcija, je to da je $F_s = 1,0$ i da kod tog graničnog stanja, konstrukcija dolazi u kolaps prilikom djelovanja potresnog opterećenja.

Kada dinamički faktor sigurnosti dostigne vrijednost 1, $F_{s,din.} = 1,0$, blok će se početi kretati, odnosno može se pisati da je koeficijent horizontalnog ubrzanja u ovisnosti o vremenu, $k_h(t)$ jednak koeficijentu graničnog ubrzanja k_c , $k_h(t)=k_c$, tako on postaje graničan.

Važan je odabir graničnog koeficijenta, odnosno onoga čiji će omjer zajedno sa koeficijentom horizontalnog ubrzanja k_h uzrokovati labilnu ravnotežu.

Jedan od načina je preko prikazanih krivulja na slici 4.8. koje u obzir uzimaju i geotehničke parametre za određeno klizište.

Krivulje stabilnosti prikazane na slici 4.8., prikazuju usporedbu varijabli β , φ , $\frac{z}{H}$ u ovisnosti o graničnome koeficijentu k_c .

Slika 4.8.: Dijagrami za odabir kritičnog koeficijenta k_c [10]

Dijagrami za odabir graničnog koeficijenta k_c sa slike 4.8. izrađeni su na temelju izraza za granični koeficijent koji uključuje geotehničke parametre koheziju c, obujamsku težinu γ , kut unutarnjeg trenja φ , te geometrijske paramtre H- visina klizišta, z- dubina klizne plohe i β - nagib klizišta [10].

$$k_{c} = \frac{\frac{c}{\gamma \cdot H} \cdot \left[\frac{H}{z \cdot \sin \beta \cdot \cos \beta} + 5, 0 \cdot e^{-0,008 \cdot \beta}\right] \cdot tg \beta + tg \varphi - tg \beta}{1 + tg \varphi \cdot tg \beta}$$
(4.7.)

Izraz (4.7.) izveden je iz brzine rada koji vrši seizmička sila nametnuta na rotacijsku i translacijsku komponentu [10]:

$$W_{rot} = \dot{\omega} \cdot \gamma \cdot r^3{}_o \cdot k_h \cdot (f_1 - f_2 - f_3)$$
(4.8.)

$$W_{trl} = \dot{\omega} \cdot \gamma \cdot r^3{}_o \cdot k_h \cdot f_{trl} \tag{4.9.}$$

gdje su:

ώ- kutna brzina [Hz]

 γ - obujamska težina [kN/m³]

r_o- radijus od točke A početka kliznog tijela do točke okretanja [m]

 k_h - koeficijent horizontalnog ubrzanja

 f_1, f_2, f_3 - funkcije čiji se izračun može naći u (Chen, 1975.)

 f_{trl} - funkcija kod translacijskog klizanja (Chen, 1975.)

Slika 4.9.: Translacijski i rotacijski mehanizam [10]

Iz dijagrama na slici 4.8. može se vidjeti kako kut unutarnjeg trenja kod kosina različitog nagiba, svoj najveći utjecaj na stabilnost postiže kada je vrijednost kuta unutarnjeg trenja φ

najveća. Isto tako, varijacija omjera dubine klizne plohe i visine klizišta imati će manju stabilnost ako je taj omjer veći. U kombinaciji sa kutom unutarnjeg trenja, kohezije u omjeru sa obujamskom gustoćom i omjera odnosa dubine klizne plohe sa visinom klizišta, može se pronaći najpovoljnija stabilnost kod koje će granični koeficijent k_c biti najpovoljniji.

5. NEWMARKOV KLIZNI BLOK

Kako faktor sigurnosti iz kvazistatičke metode ne govori ništa o pomacima kod faktora sigurnosti manjeg od jedan, $F_s < 1,0$, tada se Newmarkovim kliznim blokom predstavlja kruti blok mase *m* kojim se procjenjuju pomaci te mase na kosini. Newmarkova teorija pretpostavlja da se relativni pomak kosine neće dogoditi akceleracijom manjom od granične akceleracije.

Pretpostavke koje se uzimaju kod Newmarkove analize su:

- statička i dinamička posmična čvrstoća materijala su jednake
- granična akceleracija ne ovisi o naprezanju, već je tijekom analize stalna
- najčešće, pomak u vertikalnom smjeru prema gore nije dopušten
- dinamički utjecaj pornog tlaka vode je zanemaren.

Slika 5.1.: Pojednostavnjeni prikaz Newmarkovog kliznog bloka

Određivanje pomaka pomoću Newmarkove metode započinje se definiranjem granične akceleracije a_c za koju Newmark daje izraz koristeći geometrijsku interpretaciju klizišta te kako se pomak nagiba kosine događa u uvjetima kada maksimalna akceleracija potresnog djelovanja a_{max} premašuje graničnu a_c .

Slika 5.2.: Kružna klizna ploha s prikazanim silama tijekom djelovanja potresa

Iz slike 5.2. može se izvesti formula za akceleraciju [11], koju Newmark predstavlja kao graničnu, uzimajući u obzir odnos vanjskih sila na kliznom bloku te faktora sigurnosti.

Promatra li se geometrija klizišta (Slika 5.2.), može se vidjeti kako sila teža \vec{G} s krakom *b* oko centra rotacije O, čini aktivni moment, koji želi destabilizirati kliznu masu, a tome se momentu suprotstavljaju posmična naprezanja koja nisu određena jednoznačno, već se uzimaju njihove prosječne vrijednosti kao algebarsku suma svih posmičnih naprezanja na infinitezimalnom dijelu kosine *ds*, čiji je krak određen radijusom kružnog isječka *R*.

Uvede li se oznaka za graničnu akceleraciju $\vec{a_c} = k_c \cdot g$, koja odgovara konstantnom ubrzanju \vec{a} koje djeluje paralelno s kosinom zatvarajući s njome kut α , koji je jednak kutu nagiba kosine, može se pronaći njezin krak h s obzirom na centar rotacije O. Izjednači li se jednadžba momenata oko centra rotacije O od sile teže \vec{G} i posmičnih naprezanja τ :

$$\vec{G} \cdot b = \sum \tau \cdot R \cdot ds \tag{5.1.}$$

dobije se statički uvjet ravnoteže momenata kada blok još uvijek ne klizi.

Dodavši graničnu akceleraciju $k_c \cdot g$ s pripadnim krakom h, dobiva se jednadžba momenata kada blok klizi niz kosinu:

$$\vec{G} \cdot b + k_c \cdot g \cdot h = \sum s_q \cdot R \cdot ds \tag{5.2.}$$

gdje su s_q sile otpora na kružnome luku. Uvrsti li se izraz (5.1.) u izraz (5.2.):

$$k_c \cdot g \cdot h = R \cdot \sum s_q \cdot ds - R \cdot \sum \tau \cdot ds \tag{5.3.}$$

Podijeli li se izraz (5.3.) s izrazom (5.1.):

$$k_c \cdot g \cdot h = R \cdot \sum s_q \cdot ds - R \cdot \sum \tau \cdot ds /: \vec{G} \cdot b = \sum \tau \cdot R \cdot ds$$
(5.4.)

$$\frac{k_c \cdot g \cdot h = R \cdot \sum s_q \cdot ds - R \cdot \sum \tau \cdot ds}{\vec{G} \cdot b = \sum \tau \cdot R \cdot ds}$$
(5.5.)

$$k_c = \frac{b}{h} \cdot \left(\frac{\sum s_q \cdot ds}{\sum \tau \cdot ds} - 1\right) \tag{5.6.}$$

Iz suma sila otpora na kružnome luku i posmičnih naprezanja uzimaju se njihove prosječne vrijednosti, koje se određuju zasebno za pojedini slučaj te se izraz (5.6.) pojednostavnjuje na:

$$k_c = \frac{b}{h} \cdot \left(\frac{\bar{s}_q}{\bar{\tau}} - 1\right) \tag{5.7.}$$

Kako se već ranije definirao faktor sigurnosti iz izraza, može se zamijeniti član $\frac{\bar{s}_q}{\bar{\tau}}$ iz izraza (5.7.), s F_s , stoga se izraz (5.7.) može pisati jednostavnije kao:

$$k_c = \frac{b}{h} \cdot (F_s - 1)$$
 (5.8.)

Maksimalan iznos vrijednosti h postiže se kada je h = d, dok se minimalna vrijednost ubrzanja a, postiže kada je klizna ploha okomita na dužinu d.:

$$k_c = (F_S - 1) \cdot \frac{b}{d} \tag{5.9.}$$

odnosno:

$$k_c = (F_S - 1) \cdot \sin\beta \tag{5.10.}$$

gdje je β kut između duljine *d* i vertikale prema slici 5.2.

Određivanje granične akceleracije vrijedi i za ravne klizne plohe paralelne s kohezivnom kosinom i pod slobodno dreniranim uvjetima. Definirani faktor sigurnosti za takve uvjete definiran je omjerom tangensa kuta unutarnjeg trenja i nagiba kosine:

$$F_s = \frac{tg \,\varphi}{tg \,\alpha} \tag{5.11.}$$

Tako se može definirati granična akceleracija za ravnu kliznu plohu:

$$k_c = (F_s - 1) \cdot \sin \alpha \tag{5.12.}$$

gdje je α kut nagib kosine prema slici 5.2.

Kako je navedeno, Newmark svoju analizu pomaka mase klizišta temelji uvodeći graničnu akceleraciju a_c . Granična akceleracija predstavljat će konstantnu akceleraciju, odnosno njezin grafički prikaz bit će pravac paralelan s osi *x* koordinatnog sustava.

Matematički, pravac će u eksplicitnom obliku biti opisan jednadžbom: y = ax + b, gdje je a koeficijent smjera pravca, u našem slučaju a = 0, dok je b odsječak na y osi.

Iz graničnog koeficijenta može se izvesti i granična akceleraciju a_c :

$$a_c = k_c \cdot g \ . \tag{5.13.}$$

Iz izraza (5.12.) može se izvesti izraz za izračunavanje faktora sigurnosti:

$$k_{c} = (F_{S} - 1) \cdot \sin \alpha$$

$$F_{S} - 1 = \frac{k_{c}}{\sin \alpha}$$
(5.14.)

$$F_s = \frac{k_c}{\sin \alpha} + 1 \tag{5.15.}$$

Može se pokazati pomoću izraza (5.15.) kako se za istu graničnu akceleraciju kod različitih nagiba kosine dobiva manji faktor sigurnosti kod strmijih kosina.

nagib kosine $\alpha = 10^{\circ}$	nagib kosine $\alpha = 30^{\circ}$
$k_c = 0.2$ $F_s = \frac{k_c}{\sin \alpha} + 1$ $F_s = \frac{0.2}{\sin 10^\circ} + 1$ $F_s = 2.15$	$k_c = 0.2$ $F_s = \frac{k_c}{\sin \alpha} + 1$ $F_s = \frac{0.2}{\sin 30^\circ} + 1$ $F_s = 1.40$

Kada se definirala granična akceleracija a_c , nanosi se na y-os koordinatnog sustava, te se promatra "presijeca" li ona koji od valova prethodno izabranog akcelerograma a - t za područje koje se promatra.

Pomaci koje Newmark definira bazirani su na jednostavnome bloku koji klizi po horizontalnoj podlozi kao na slici 5.3. Gibanje tla označuje se kao y(t), dok je relativno gibanje označeno sa u, tada je [11]:

Slika 5.3.: Blok težine W na horizontalnoj podlozi

Slika 5.4.: *a* - *t* dijagram

Na slici 5.4. prikazan je a - t dijagram koji označuje akceleraciju bloka sa slike 5.3. u trenutku vremena t_0 .

Integrira li se površina označena na slici 5.4., dobit će se v - t dijagram prikazan na slici 5.5.

Maksimalna brzina izražena iz v - t dijagrama, slika 5.5. je:

$$v = a_g \cdot t_0 \tag{5.15.}$$

Integrira li se dalje površina označena na slici 5.5., može se izvesti izraz za maksimalan pomak:

$$u_m = \frac{1}{2} \cdot v \cdot t_m - \frac{1}{2} \cdot v \cdot t_0 \tag{5.16.}$$

43

gdje je t_mizraženo kao:

$$t_m = \frac{v}{a_g} \tag{5.17.}$$

stoga se može pisati:

$$u_m = \frac{1}{2} \cdot \frac{v^2}{a_g} - \frac{1}{2} \cdot \frac{v^2}{a_g}$$
(5.18.)

odnosno:

$$u_m = \frac{v^2}{2 \cdot a_g} - \left(1 - \frac{a}{A}\right) \tag{5.19.}$$

Ako pravac granične akceleracije a_c presijeca neki od valova akcelerograma, onda se iz a - t dijagrama, integriranjem površine omeđene između vala akcelerograma i pravca granične akceleracije, dobiva v - t graf, odnosno ovisnost brzine potresnog opterećenja o vremenu. Daljnjim integriranjem površine između x-osi i funkcije brzine, može se dobiti graf ovisnosti pomaka o vremenu u - t.

Skraćeno se to može pisati:

$$D = \iint_{t}^{t} [a(t) - a_{c}] dt$$
(5.20.)

gdje je:

D- Newmarkov pomak [m] a(t)- vršna akceleracija [ms⁻²] a_c - granična akceleracija [ms⁻²]

Slika 5.6.: Primjer Newmarkove analize [12]

Slika 5.6. prikazuje pozitivnu akceleraciju, odnosno pravac granične akceleracije a_c koji odsijeca pozitivni dio osi akcelerograma. Međutim, u slučaju presijecanja negativnog dijela akcelerograma dobivaju se dvosmjerna gibanja bloka – uz i niz kosinu. Ukoliko se ima takvo dvosmjerno gibanje, integrirat će se površina ispod negativnog dijela akcelerograma, zbrajajući tako pomak ispod negativnog dijela i dio pozitivnog dijela (Slika 5.7.).

Objašnjenje ovakvog dvosmjernog gibanja leži u tome da ako se u izraz (5.12.) uvrsti faktor sigurnosti manji od 1,0, $F_s < 1,0$ onda se dobiva "negativna" akceleracija, odnosno gibanje uz kosinu.

Slika 5.7. Dvosmjerno gibanje bloka [13]

Kako je pismeno računanje pomaka *D* vrlo složeno bez računalnih programa, mnogi su autori dali izraze kojima se procjenjuju pomaci. Ovdje se navode samo neki autori i njihovi izrazi prema kojima će se kasnije dobiti pomaci.

Izraz prema Ambraseys i Menu (1988.)

$$ln(D) = 0.9 + ln\left[\left(1 - \frac{k_c}{k_{max}}\right)^{2.53} \cdot \left(\frac{k_c}{k_{max}}\right)^{-1.09}\right] \pm 0.3$$
(5.21.)

gdje je:

D- očekivani pomak [cm]

 k_c - granični koeficijent negativnog predznaka

 k_{max} - maksimalni koeficijent negativnog predznaka.

Jibson (2007.) predlaže da se umjesto vršnog ubrzanja a_{max} , koristi I_a , Ariasov intenzitet za opis jake trešnje (Arias, 1970.)

$$I_a = \frac{\pi}{2 \cdot g} \cdot \int [a(t)]^2 dt \tag{5.22.}$$

Tada se pomak može odrediti iz:

$$ln(D) = 0,561 \cdot ln I_a - 3,833 \cdot ln\left(\frac{k_c}{k_{max}}\right) - 1,474 \pm 0,616$$
(5.23.)

Slika 5.8.: Dijagram ovisnosti Ariasovog intenziteta i Newmarkovog pomaka

Dijagram ovisnosti sa slike 5.8. prikazuje granične linije ubrzanja prema izrazu (5.23.) Može se zaključiti kako se za manje iznose graničnih ubrzanja uz veće vrijednosti Ariasovog intenziteta dobije veći pomak, što potvrđuje i prethodni izraz prema Ambraseys i Menu da se za manje vrijednosti omjera graničnog i maksimalnog koeficijenta ubrzanja, dobije veći pomak.

6. PRIMJERI PRORAČUNA UTJECAJA POTRESA NA STABILNOST KOSINA

Kao primjer proračuna utjecaja potresa na stabilnost kosina, usporedit će se kosina sa nesaturiranim i potpuno saturiranim tlom. Tlo koje će se predstavljati kao klizno tijelo imati će geotehničke paramtere dobivene povratnom analizom, za nesaturirano tlo odabrani su parametri kako bi faktor sigurnosti bio veći od 1,0, dok su povratnom analizom za nesaturirano tlo odabrani parametri kako bi faktor sigurnosti bio manji od 1,0, odnosno kako bi se predstavila kosina kod koje je već počelo klizanje. Koristi se računalni program GEO5 sa opcijom metode konačnih elemenata, kako bi se prikazali modeli nesaturiranog i saturiranog tla, te kako bi se provjerili faktori sigurnosti dobiveni pismenim izračunom.

Promatra se kosina sa nesaturiranim tlom visine 4 m, nagiba $\alpha = 15^{\circ}$, sa sljedećim geotehničkim parametrima:

Glinovit	o tlo	Laporovita glina						
kohezija:	$c = 2 kN/m^2$	kohezija:	$c = 30 \ kN/m^2$					
kut unutarnjeg trenja:	$\varphi = 24^{\circ}$	kut unutarnjeg trenja:	$\varphi = 30^{\circ}$					
obujamska težina:	$\gamma = 18,5 \ kN/m^3$	obujamska težina:	$\gamma = 18,5 \ kN/m^3$					
debljina kliznog sloja:	z = 2 m							

i horizontalnim koeficijentom ubrzanja tla od $k_h = 0,23$.

Slika 6.1.: Model nesaturiranog klizišta

Za ovu kosinu pimeno se izračuna statički faktor sigurnosti F_s iz izraza (2.9.)

$$F_{s} = \frac{\tau_{f}}{\tau} = \frac{c}{\gamma \cdot z \cdot \sin \alpha \cdot \cos \alpha} + \frac{tg \, \varphi}{tg \, \alpha}$$

$$F_{s} = \frac{\tau_{f}}{\tau} = \frac{2 \, kN/m^{2}}{18.5 \, kN/m^{3} \cdot 2 \, m \cdot \sin 15^{\circ} \cdot \cos 15^{\circ}} + \frac{tg \, 24^{\circ}}{tg \, 15^{\circ}}$$

$$F_{s} = 1.87$$

Slika 6.2.: Izračun faktora sigurnosti pomoću programa GEO5

Kako je faktor sigurnosti $F_s > 1,0$, kod statičkih utjecaja nema opasnosti od klizanja plohe. Međutim, podvrgne li se kosina djelovanju kvazistatičkih potresnih sila, dobiva se smanjeni faktor sigurnosti, što govori da će pod takvim djelovanjem doći do klizanja plohe.

Pismeno se izračunava kvazistatički faktor sigurnosti:

$$F_{s,kvaz.} = \frac{\tau_f}{\tau} = \frac{c}{\gamma \cdot z \cdot \cos^2 \beta \cdot (k_h + tg \beta)} + \frac{1 - k_h \cdot tg \beta}{k_h + tg \beta} \cdot tg \varphi$$

 $F_{s,kvaz.} = \frac{2 \, kPa}{18,5 \, kN/m^3 \cdot 2 \, m \cdot \cos^2 \, 15^\circ \cdot (0,23 + tg \, 15^\circ)} + \frac{1 - 0,23 \cdot tg \, 15^\circ}{0,23 + tg \, 15^\circ} \cdot tg \, 24^\circ$

$$F_{s,kvaz} = 0,96$$

 Provjera stabilnosti kosine (sve metode)

 Sarma :
 FS = 0,97 < 1,50 NIJE PRIHVATLJIVO</td>

 Spencer :
 FS = 0,96 < 1,50 NIJE PRIHVATLJIVO</td>

 Janbu :
 FS = 0,96 < 1,50 NIJE PRIHVATLJIVO</td>

 Morgenstern-Price :
 FS = 0,96 < 1,50 NIJE PRIHVATLJIVO</td>

Slika 6.3.: Izračun faktora sigurnosti pod djelovanjem potresnog djelovanja pomoću programa GEO5

Iako je vertikalni seizmički koeficijent u kvazistatičkoj analizi zanemaren, ovdje se želi provjeriti njegov stvarni utjecaj na rezultat faktora sigurnosti te će se kombinirati zajedno sa horizontalnim seizmičkim koeficijentom i tražiti onaj omjer kod kojeg dolazi do labilne ravnoteže. Kombinacijom vertikalnog seizmičkog koeficijenta u intervalima vrijednosti od 0,00 do 0,23 sa vrijednostima horizontalnih seizmičkih koeficijenata u intervalu od 0,00 do 0,23 pomoću programa GEO5, dobivaju se vrijednosti faktora sigurnosti koji se svrstavaju u tablični prikaz (Tablica 6.1.).

kv	kh	Fs	kv	kh	Fs												
0,00	0	1,87	0,02	0	1,87	0,04	0	1,87	0,06	0	1,87	0,08	0	1,87	0,1	0	1,87
0,00	0,02	1,71	0,02	0,02	1,70	0,04	0,02	1,69	0,06	0,02	1,68	0,08	0,02	1,67	0,1	0,02	1,66
0,00	0,04	1,59	0,02	0,04	1,58	0,04	0,04	1,57	0,06	0,04	1,56	0,08	0,04	1,55	0,1	0,04	1,54
0,00	0,06	1,49	0,02	0,06	1,48	0,04	0,06	1,47	0,06	0,06	1,46	0,08	0,06	1,45	0,1	0,06	1,44
0,00	0,08	1,4	0,02	0,08	1,39	0,04	0,08	1,38	0,06	0,08	1,37	0,08	0,08	1,36	0,1	0,08	1,35
0,00	0,1	1,31	0,02	0,1	1,30	0,04	0,1	1,29	0,06	0,1	1,28	0,08	0,1	1,27	0,1	0,1	1,26
0,00	0,12	1,24	0,02	0,12	1,23	0,04	0,12	1,22	0,06	0,12	1,21	0,08	0,12	1,20	0,1	0,12	1,19
0,00	0,14	1,18	0,02	0,14	1,17	0,04	0,14	1,16	0,06	0,14	1,15	0,08	0,14	1,14	0,1	0,14	1,13
0,00	0,16	1,12	0,02	0,16	1,11	0,04	0,16	1,10	0,06	0,16	1,09	0,08	0,16	1,08	0,1	0,16	1,07
0,00	0,18	1,06	0,02	0,18	1,05	0,04	0,18	1,05	0,06	0,18	1,04	0,08	0,18	1,03	0,1	0,18	1,02
0,00	0,23	1,02	0,02	0,23	1,01	0,04	0,23	1,00	0,06	0,23	0,98	0,08	0,23	0,97	0,1	0,23	0,96

T 11' < 1	\mathbf{O} ·	1 (****)	C 1 /	• ,•	1 1		.1
Tablica 6 L	()visnosti	koeficiienata	o taktoru	sigurnosti	KOU.	necaturiranog	tla
	Ovisitosti	Roenerjenata	0 laktoru	siguinosu	KOU .	nesaturnanog	ιıu

kv	kh	Fs												
0,12	0	1,87	0,14	0	1,87	0,16	0	1,87	0,18	0	1,87	0,23	0	1,87
0,12	0,02	1,65	0,14	0,02	1,64	0,16	0,02	1,63	0,18	0,02	1,62	0,23	0,02	1,61
0,12	0,04	1,53	0,14	0,04	1,52	0,16	0,04	1,51	0,18	0,04	1,50	0,23	0,04	1,49
0,12	0,06	1,43	0,14	0,06	1,42	0,16	0,06	1,41	0,18	0,06	1,40	0,23	0,06	1,39
0,12	0,08	1,34	0,14	0,08	1,33	0,16	0,08	1,32	0,18	0,08	1,31	0,23	0,08	1,30
0,12	0,1	1,25	0,14	0,1	1,24	0,16	0,1	1,23	0,18	0,1	1,22	0,23	0,1	1,21
0,12	0,12	1,18	0,14	0,12	1,17	0,16	0,12	1,16	0,18	0,12	1,15	0,23	0,12	1,13
0,12	0,14	1,13	0,14	0,14	1,12	0,16	0,14	1,11	0,18	0,14	1,10	0,23	0,14	1,09
0,12	0,16	1,06	0,14	0,16	1,05	0,16	0,16	1,04	0,18	0,16	1,03	0,23	0,16	1,02
0,12	0,18	1,01	0,14	0,18	1,00	0,16	0,18	0,99	0,18	0,18	0,98	0,23	0,18	0,97
0,12	0,23	0,95	0,14	0,23	0,94	0,16	0,23	0,93	0,18	0,23	0,92	0,23	0,23	0,91

Može se zaključiti kako primijenjena kvazistatička metoda ne daje rezultate pomaka, već se primjenjuje Newmarkova metoda.

Ulazni podaci za Newmarkovu metodu bit će početni statički faktor sigurnosti 1,80 te nagib kosine $\alpha = 15^{\circ}$.

Računa se granična akceleracija kod koje će započeti klizanje bloka:

$$a_c = (F_S - 1) \cdot \sin \alpha \cdot g$$
$$a_c = (1,87 - 1) \cdot \sin 15^\circ \cdot 9,81 \, ms^{-2} = 2,21 \, ms^{-2}$$

Granični koeficijent: $k_c = \frac{2,21 \text{ ms}^{-2}}{9,81 \text{ ms}^{-2}} = 0,22$

S obzirom na to da je granična akceleracija manja od maksimalne vršne akceleracije, nastat će pomaci mase iz izraza 5.21.:

$$ln(D) = 0.9 + ln\left[\left(1 - \frac{k_c}{k_{max}}\right)^{2,53} \cdot \left(\frac{k_c}{k_{max}}\right)^{-1,09}\right] \pm 0.3$$
$$ln(D) = 0.9 + ln\left[\left(1 - \frac{-0.22 \ ms^{-2}}{-0.23 \ ms^{-2}}\right)^{2,53} \cdot \left(\frac{-0.22 \ ms^{-2}}{-0.23 \ ms^{-2}}\right)^{-1,09}\right] \pm 0.3$$
$$ln(D) = -6.68 \rightarrow e^{-6.68} = 0.0013 \ cm = 0.013 \ mm$$

Promatra se slučaj potpuno saturirane klizne plohe sa istim geotehničkim parametrima te istim nagibom kosine $\alpha = 15^{\circ}$.

Slika 6.4.: Model potpuno saturiranog tla

Za ovu kosinu pismeno se izračunava statički faktor sigurnosti F_s za saturirano tlo:

 $F_{s} = \frac{c + \gamma' \cdot z \cdot \cos^{2} \alpha \cdot tg \,\varphi}{\gamma \cdot z \cdot \sin \alpha \cdot \cos \alpha}$

$$F_{s} = \frac{2 \ kPa + 8.5 \ kN/m^{3} \cdot 2 \ m \cdot cos^{2} \ 15^{\circ} \cdot tg \ 24^{\circ}}{18.5 \ kN/m^{3} \cdot 2 \ m \cdot sin \ 15^{\circ} \cdot cos \ 15^{\circ}}$$

$$F_{s} = 0,97$$

Slika 6.5.: Izračun faktora sigurnosti pomoću programa GEO5

Kako je statički faktor sigurnosti $F_s < 1,0$ klizanje kosine već je počelo. Ukoliko se takva nestabilna kosina podvrgne kvazistatičkim silama, faktor sigurnosti još se više smanjuje.

Pismeno se izračunava kvazistatički faktor sigurnosti:

$$F_{s,kvaz.} = \frac{\tau_f}{\tau} = \frac{c}{\gamma' \cdot z \cdot \cos^2\beta \cdot (k_h + tg\beta)} + \frac{1 - k_h \cdot tg\beta}{k_h + tg\beta} \cdot tg\varphi$$

 $F_{s,kvaz.} = \frac{2 \, kPa}{8,5 \, kN/m^3 \cdot 2 \, m \cdot \cos^2 \, 15^\circ \cdot (0,23 + tg \, 15^\circ)} + \frac{1 - 0,23 \cdot tg \, 15^\circ}{0,23 + tg \, 15^\circ} \cdot tg \, 24^\circ$

$$F_{s,kvaz.} = 0,5$$

Slika 6.6.: Izračun faktora sigurnosti pod djelovanjem potresnog djelovanja pomoću programa GEO5

Kombinacijom vertikalnog seizmičkog koeficijenta u intervalima vrijednosti od 0,00 do 0,23 sa vrijednostima horizontalnih seizmičkih koeficijenata u intervalu od 0,00 do 0,23 pomoću programa GEO5, dobivaju se vrijednosti faktora sigurnosti koji se svrstavaju u tablični prikaz (Tablica 6.2.).

kv	kh	Fs	kv	kh	Fs												
0,00	0	0,97	0,02	0	0,97	0,04	0	0,97	0,06	0	0,97	0,08	0	0,97	0,1	0	0,97
0,00	0,02	0,9	0,02	0,02	0,89	0,04	0,02	0,88	0,06	0,02	0,87	0,08	0,02	0,86	0,1	0,02	0,85
0,00	0,04	0,83	0,02	0,04	0,82	0,04	0,04	0,81	0,06	0,04	0,80	0,08	0,04	0,79	0,1	0,04	0,78
0,00	0,06	0,78	0,02	0,06	0,77	0,04	0,06	0,76	0,06	0,06	0,75	0,08	0,06	0,74	0,1	0,06	0,73
0,00	0,08	0,73	0,02	0,08	0,72	0,04	0,08	0,71	0,06	0,08	0,70	0,08	0,08	0,69	0,1	0,08	0,68
0,00	0,1	0,69	0,02	0,1	0,68	0,04	0,1	0,67	0,06	0,1	0,66	0,08	0,1	0,65	0,1	0,1	0,64
0,00	0,12	0,66	0,02	0,12	0,64	0,04	0,12	0,63	0,06	0,12	0,62	0,08	0,12	0,61	0,1	0,12	0,60
0,00	0,14	0,61	0,02	0,14	0,60	0,04	0,14	0,59	0,06	0,14	0,58	0,08	0,14	0,57	0,1	0,14	0,56
0,00	0,16	0,58	0,02	0,16	0,57	0,04	0,16	0,56	0,06	0,16	0,55	0,08	0,16	0,54	0,1	0,16	0,53
0,00	0,18	0,55	0,02	0,18	0,54	0,04	0,18	0,53	0,06	0,18	0,52	0,08	0,18	0,51	0,1	0,18	0,50
0,00	0,23	0,53	0,02	0,23	0,52	0,04	0,23	0,51	0,06	0,23	0,50	0,08	0,23	0,49	0,1	0,23	0,48

Tablica 6.2. Ovisnosti koeficijenata o faktoru sigurnosti kod potpuno saturiranog tla

kv	kh	Fs												
0,12	0	0,97	0,14	0	0,97	0,16	0	0,97	0,18	0	0,97	0,23	0	0,97
0,12	0,02	0,84	0,14	0,02	0,83	0,16	0,02	0,82	0,18	0,02	0,81	0,23	0,02	0,80
0,12	0,04	0,77	0,14	0,04	0,76	0,16	0,04	0,75	0,18	0,04	0,74	0,23	0,04	0,73
0,12	0,06	0,72	0,14	0,06	0,71	0,16	0,06	0,70	0,18	0,06	0,69	0,23	0,06	0,68
0,12	0,08	0,67	0,14	0,08	0,66	0,16	0,08	0,65	0,18	0,08	0,64	0,23	0,08	0,63
0,12	0,1	0,63	0,14	0,1	0,62	0,16	0,1	0,61	0,18	0,1	0,60	0,23	0,1	0,59
0,12	0,12	0,59	0,14	0,12	0,58	0,16	0,12	0,57	0,18	0,12	0,56	0,23	0,12	0,55
0,12	0,14	0,55	0,14	0,14	0,54	0,16	0,14	0,53	0,18	0,14	0,52	0,23	0,14	0,51
0,12	0,16	0,52	0,14	0,16	0,51	0,16	0,16	0,50	0,18	0,16	0,49	0,23	0,16	0,49
0,12	0,18	0,49	0,14	0,18	0,48	0,16	0,18	0,47	0,18	0,18	0,46	0,23	0,18	0,45
0,12	0,23	0,47	0,14	0,23	0,46	0,16	0,23	0,45	0,18	0,23	0,44	0,23	0,23	0,43

Već rečeno, primijenjena kvazistatička metoda ne daje rezultate pomaka, već se primjenjuje Newmarkova metoda.

Ulazni podaci za Newmarkovu metodu bit će početni statički faktor sigurnosti 0,97, te nagib kosine $\alpha = 15^{\circ}$.

Računa se granična akceleracija kod koje će započeti klizanje bloka:

$$a_c = (F_s - 1) \cdot \sin \alpha \cdot g$$
$$a_c = (0.97 - 1) \cdot \sin 15^\circ \cdot 9.81 \, ms^{-2} = -0.08 \, ms^{-2}$$

Granični koeficijent: $k_c = \frac{-0.08 \text{ ms}^{-2}}{9.81 \text{ ms}^{-2}} = -0.0082$

Dobivena je "negativna" akceleracija što znači da će gibanje bloka biti u dva smjera – uz i niz kosinu. Kako bi se izračunao ukupan pomak, zbrojiti će se pomaci u oba smjera.

Maksimalna akceleracija u negativnome dijelu akcelerograma približno je $-1,95 ms^{-2}$ te se ona vraća na pozitivni dio na akceleraciju od 0,96 ms^{-2} .

$$ln (D_{neg}) = 0.9 + ln \left[\left(1 - \frac{k_c}{k_{max}} \right)^{2,53} \cdot \left(\frac{k_c}{k_{max}} \right)^{-1,09} \right] \pm 0.3$$
$$ln (D_{neg}) = 0.9 + ln \left[\left(1 - \frac{-0.19}{-0.1987} \right)^{2,53} \cdot \left(\frac{-0.19}{-0.1987} \right)^{-1,09} \right] \pm 0.3$$
$$ln (D_{neg}) = -6.66 \rightarrow e^{-6.66} = 0.0013 \ cm = 0.013 \ mm$$

Maksimalna akceleracija u pozitivnom dijelu akcelerograma na koju se blok vraća iz negativnog dijela približno iznosi $0.96 \, ms^{-2}$.

$$ln(D_{poz}) = 0.9 + ln\left[\left(1 - \frac{k_c}{k_{max}}\right)^{2.53} \cdot \left(\frac{k_c}{k_{max}}\right)^{-1.09}\right] \pm 0.3$$
$$ln(D_{poz}) = 0.9 + ln\left[\left(1 - \frac{-0.19}{-0.99}\right)^{2.53} \cdot \left(\frac{-0.19}{-0.99}\right)^{-1.09}\right] \pm 0.3$$
$$ln(D_{poz}) = 2.46 \rightarrow e^{2.46} = 11.71 \text{ cm} = 117.1 \text{ mm}$$

Ukupni pomak mase iznosi: $D_{neg+poz} \approx 117 mm$.

7. ANALIZA DOBIVENIH REZULTATA

U nastavku se prikazuju rezultati dobiveni analizom utjecaja potresnog djelovanja kod nesaturiranog i saturiranog tla kosina.

7.1.Potresno djelovanje na kosini sa nesaturiranim tlom

Iz tabličnog prikaza (Tablica 6.1.) napravljen je graf (Slika 7.1.) koji prikazuje kako je utjecaj vertikalne komponente na faktor sigurnosti u slučaju nesaturiranog tla zanemaren, što se vidi iz razmaka između krivulja, kako praktički razmaka između krivulja ni nema, tako nema ni utjecaja vertikalnog seizmičkog koeficijenta. Dobivene su krivulje eksponencijalnog oblika, odnosno ekponencijalnog pada faktora sigurnosti, bez velikog utjecaja vertikalnog seizmičkog koeficijenta.

Slika 7.1.: Ovisnost faktora sigurnosti o omjeru horizontalnog i vertikalnog seizmičkog koeficijenta

Na slici 7.2. prikazani su omjeri horizontalnog i vertikalnog seizmičkog koeficijenta, izdvojio se najkritičniji i najpovoljniji skup, pri čemu je najkritičniji skup onaj koji sadrži omjere bliže početnom faktoru sigurnosti, što znači da će potresno djelovanje sa takvim omjerima na takvoj kosini sa početnim faktorom sigurnosti 1,87, brže doći do kritičnijeg skupa za razliku od povoljnijeg skupa do kojeg treba više vremena od početnog faktora sigurnosti.

Slika 7.2.: Najpovoljniji i najkritičniji skupovi kod omjera horizontalnog i vertikalnog koeficijenta

Pismeno izračunati pomaci u ovom su slučaju vrlo mali, zbog velikog početnog statičkog faktora sigurnosti. Na slici 7.3. grafički su prikazani pomaci za svaki od faktora sigurnosti u intervalu od 1,87 do 1,1. Dobiveno je eksponencijalno povećanje pomaka smanjenjem omjera granične i maksimalne akceleracije odnosno, kako se granična akceleracija a_c prema Newmarkovom izrazu smanjuje (smanjenjem faktora sigurnosti), povećava se pomak D.

Slika 7.3.: Ovisnost pomaka o faktoru sigurnosti kod nesaturiranog tla

Pravac tog graničnog ubrzanja sjeći će sve veće površine između krivulje akcelerograma, što za rezultat daje veće pomake (Slika 7.4.).

Slika 7.4.: Akcelerogram zagrebačkog potresa 22.03.2020. sa horizontalnim koeficijentom ubrzanja 0,23

Slika 7.5.: Vizualni prikaz pomaka sa najvećim početnim faktorom sigurnosti kosine pomoću programa GEO5

7.2.Potresno djelovanje na kosini sa potpuno saturiranim tlom

Iz tabličnog prikaza (Tablica 6.2.) napravljen je graf (Slika 7.6.) koji prikazuje kako utjecaj vertikalne komponente na faktor sigurnosti u slučaju potpuno saturiranog tla nije zanemaren, što se vidi iz razmaka između krivulja, kako postoje poveći razmaci između krivulja tako postoji i utjecaja vertikalnog seizmičkog koeficijenta. Dobivene su krivulje eksponencijalnog oblika, odnosno ekponencijalnog pada faktora sigurnosti, sa utjecajem vertikalnog seizmičkog koeficijenta.

Slika 7.6.: Ovisnost faktora sigurnosti o omjeru horizontalnog i vertikalnog seizmičkog koeficijenta

Na slici 7.7. prikazane su točke omjera horizontalnog i vertikalnog seizmičkog koeficijenta, izdvojila se najkritičnija i najpovoljnija točka, pri čemu je najkritičnija točka ona koji sadrži omjere bliže početnom faktoru sigurnosti, što znači da će potresno djelovanje sa takvim omjerom na takvoj kosini sa početnim faktorom sigurnosti 0,97, brže doći do kritičnije točke za razliku od povoljnije točke do koje treba više vremena od početnog faktora sigurnosti.

Slika 7.7.: Najpovoljnije i najkritičnije točke kod omjera horizontalnog i vertikalnog koeficijenta

Pismeno izračunati pomaci u ovom su slučaju veliki, zbog utjecaja malog početnog statičkog faktora sigurnosti. Na slici 7.8. grafički su prikazani pomaci za svaki od faktora sigurnosti u intervalu od 0,97 do 0,6, te je za usporedbu prikazan i graf pomaka kod nesaturiranog tla. Također dobiveno je eksponencijalno povećanje pomaka, koji početak ima od vrijednosti pomaka 117 mm, budući da je klizno tijelo već dobilo pomak zbog saturacije i prije potresnog djelovanja.

Slika 7.8. Usporedba pomaka nesaturiranog i saturiranog tla

Slika 7.9.: Akcelerogram zagrebačkog potresa 22.03.2020. sa horizontalnim koeficijentom ubrzanja 0,23

Slika 7.10.: Vizualni prikaz pomaka sa najvećim početnim faktorom sigurnosti kosine pomoću programa GEO5

Slika 7.11.: Odnos posmičnog naprezanja i relativnih pomaka nesaturiranog i saturiranog tla kod djelovanja potresa

Graf na slici 7.11. govori o odnosu posmičnog naprezanja i relativnog pomaka mase klizišta. Svaka točka krivulje predstavlja određeni faktor sigurnosti, gdje je najveći onaj kod kojega je posmično naprezanje τ najmanje. Kao što graf sa slike 7.11. prikazuje, za približno istu vrijednost posmične čvrstoće kod nesaturiranog tla, saturirano će tlo za takav isti iznos imati veće pomake kod potresnog djelovanja, zbog već smanjenog početnog faktora sigurnosti, koji iznosi 0,97. Pojavljuje se i rezidualna čvrstoća tla, odnosno ona čvrstoća tla koju uzorak ima nakon sloma, ona se prema grafu sa slike 7.11. počinje stvarati od faktora sigurnosti 1,08, te se vrijednost rezidualne čvrstoće za sve manje faktore sigurnosti mijenja vrlo malo, dok se za potpuno saturirano tlo za sve manje faktore sigurnosti pomaci linearno povećavanju povećanjem posmične čvrstoće.

8. ZAKLJUČAK

Ovim završnim radom obuhvaćena je analiza kvazistatičke metode i metode Newmarkovoga kliznoga bloka. Newmarkov je klizni blok uspoređen s fizikalnom analizom bloka koji klizi na kosini. Predstavljeno je i prigušeno harmonijsko titranje koje se događa kod djelovanja potresa, to jest amplituda potresnog vala smanjuje se s vremenom. Također, predstavljen je sustav s više stupnjeva slobode, gdje se izvodom jednadžbe gibanja, mogu odrediti pomaci kliznog bloka diferencijalnom jednadžbom drugog reda.

Nadalje, analizom kvazistatičke metode, dolazi se do rezultata statičkog faktora sigurnosti na temelju izraza koji se izveo iz ravnoteže sila, odnosno statike, dok je iz dinamičkog faktora sigurnosti, dan rezultat s uključenom potresnom silom te se smanjio faktor sigurnosti za približno pola vrijednosti statičkog faktora sigurnosti.

Kako ni jedan ni drugi faktor sigurnosti ne daju rezultate o pomacima, Newmarkovom se analizom tražio pomak bloka kod statičkog faktora sigurnosti, te se izvodom Newmarkovog izraza za graničnu akceleraciju, "presjekao" val akcelerograma potresa, te se pomoću izraza autora Ambraseys i Menu odredio pomak bloka kod maksimalnih vršnih akceleracija.

Predstavljena teorija o utjecaju vertikalne komponente potresnog djelovanja kod saturiranog i nesaturiranog tla može poslužiti kao podloga za daljnja istraživanja takvog utjecaja budući da dobiveni rezultat pokazuje njezino drugačije ponašanje kod prikazanih tala, čiji se utjecaji mogu izmjeriti različitim geofizičkim metodama na terenu.

U Varaždinu 8. ožujka 2022.

9. LITERATURA

- [1] Paska, K.: Sanacija klizišta gabionskim zidom, Završni rad, Varaždin 2013.
- [2] Bačić, M., Ivšić T., Kovačević Meho, S. (2020.) Geotehnika kao nezaobilazan segment potresnog inženjerstva. *Građevinar*, vol. 72, no. 10, str. 923-936.
- [3] Soldo, B.: Dodatno objašnjenje uz izvješća o cestovnim puzištima/ klizištima na lokalnim i županijskim cestama Zagrebačke županije s naglaskom na potrese
- [4] Highland, L. M., Bobrowsky P.: *The Landslide Handbook- A Guide to Undertanding Landslides*, U.S. Geological Survey, Reston, Virginia, 2008.
- [5] Nonveiller, E., Phillips, C.: Mehanika tla i temeljenje građevina, Zagreb, Školska knjiga, 1979.
- [6] Nossan Szavits, V.: Mehanika tla i stijena, 13. predavanje, Stabilnost kosina
- [7] Barić, M.: Kinematička analiza stabilnosti blokova stijenske mase na kosini, Diplomski rad, Split, 2014.
- [8] Zavod za geotehniku, Geotehničko inženjerstvo, 10. predavanje, *Stabilnost stijenskih pokosa*, Sveučilište u Zagrebu, Građevinski fakultet
- [9] Soldo, B.: *Primjeri akutnih pojava masovnih padinskih klizanja i njihova sanacija*, predavanje na Danima ovlaštenih inženjera građevinarstva, Opatija, 2016.
- [10] Huang, W. (2018). Stability of unsaturated soil slopes under rainfall and seismic loading, Doctoral thesis, Nanyang Technological University, Singapore
- [11] Newmark, N. M. (1965.) .: Effects of Earthquakes on Dams and Embankments, Geotechnique
- [12] Roje-Bonacci, T.: Nasute gradevine, Sveučilište u Splitu, Gradevinsko-arhitektonski fakultet, Split, 2015.
- [13] Korzec, A., Jankowski R. (2020.): Extended Newmark method to assess stability of slope under bidirectional seismic loading
- [14] Soldo, B.: Predavanja iz kolegija Geomehanika I., Varaždin, zimski semestar ak. god. 19./20.
- [15] Soldo, B.: Predavanja iz kolegija Geomehanika II., Varaždin, ljetni semestar ak. god. 19./20.
- [16] Lazarević, D., Šavor Novak M., Uroš, M.: Dinamika konstrukcija s uvodom u potresno inženjerstvo (Skripta), Zagreb, 2018.
- [17] Stojić, M.: Predavanja iz Fizike (Mehanika), Varaždin, 2011.

- [18] Kranjčec, M.: Auditorne vježbe iz kolegija Fizika, Varaždin, ljetni semestar ak. god. 19./20.
- [19] Puž, G.: Predavanja iz kolegija Protupotresno inženjerstvo, Varaždin, ljetni semestar ak. god. 20./21.

Internetski izvori:

- [20] http://seizkarta.gfz.hr/hazmap/karta.php [pristupljeno 1.3.2022.]
- [21] <u>https://repository.lib.ncsu.edu/bitstream/handle/1840.20/30807/K1987.pdf?sequence=1</u> [pristupljeno 27.2.2022.]
- [22] https://www.nap.edu/read/6061/chapter/12 [pristupljeno 8.3.2022.]
- [23] <u>https://www.researchgate.net/figure/Newmarks-sliding-block-approach_fig1_315970006</u> [pristupljeno 8.3.2022.]
- [24] https://hrcak.srce.hr/file/358515 [pristupljeno 8.3.2022.]
- [25] https://www.slideserve.com/donoma/eci-281a-term-project-analyses-of-seismic-slope-stability

10. POPIS SLIKA

Slika 1.1.	Primjeri nastanka klizišta za vrijeme potresa u Japanu
	izvor: Soldo, B.: Dodatno objašnjenje uz izvješća o cestovnim puzištima/
	klizištima na lokalnim i županijskim cestama Zagrebačke županije s
	naglaskom na potrese
Slika 1.2.	Klizišta u Hrvatskoj Kostajnici
	izvor: Soldo, B.: Dodatno objašnjenje uz izvješća o cestovnim puzištima/
	klizištima na lokalnim i županijskim cestama Zagrebačke županije s
	naglaskom na potrese
Slika 2.1.	Osnovni geometrijski elementi klizišta
	izvor: Paska, K.: Sanacija klizišta gabionskim zidom, Završni rad, Varaždin
	2013.
Slika 2.2.	Shematski prikaz rotacijskog klizanja
	izvor: Highland, L. M., Bobrowsky P.: The Landslide Handbook- A Guide
	to Undertanding Landslides, U.S. Geological Survey, Reston, Virginia,
	2008.
Slika 2.3.	Shematski prikaz translacijskog klizanja
	izvor: Highland, L. M., Bobrowsky P.: The Landslide Handbook- A Guide
	to Undertanding Landslides, U.S. Geological Survey, Reston, Virginia,
	2008.
Slika 2.4.	Translacija vektora iz točaka
	autorski rad
Slika 2.5.	Rotacija točaka oko osi rotacije
	autorski rad
Slika 2.6.	Primjer rotacijskog klizanja
	izvor: Highland, L. M., Bobrowsky P.: The Landslide Handbook- A Guide
	to Undertanding Landslides, U.S. Geological Survey, Reston, Virginia,
	2008.
Slika 2.7.	Translacijsko klizanje aktivirano 2001. u Beatton River Valley, British
	Columbia, Canada
	izvor: Highland, L. M., Bobrowsky P.: The Landslide Handbook- A Guide
	to Undertanding Landslides, U.S. Geological Survey, Reston, Virginia,
	2008.

Slika 2.8.	Polagano puzanje mase koje uzrokuje klizanje
	izvor: Soldo, B.: Primjeri akutnih pojava masovnih padinskih klizanja i
	njihova sanacija, predavanje na Danima ovlaštenih inženjera
	građevinarstva, Opatija, 2016.
Slika 2.9.	Shematski prikaz tečenja kosine
	izvor: Highland, L. M., Bobrowsky P.: The Landslide Handbook- A Guide
	to Undertanding Landslides, U.S. Geological Survey, Reston, Virginia,
	2008.
Slika 2.10.	Tečenje niz kosinu
	izvor:https://www.bgs.ac.uk/discovering-geology/earth-
	hazards/landslides/
Slika 2.11.	Tečenje niz kosinu
	izvor: Highland, L. M., Bobrowsky P.: The Landslide Handbook- A Guide
	to Undertanding Landslides, U.S. Geological Survey, Reston, Virginia,
	2008.
Slika 2.12.	Duboko rotacijsko klizanje
	izvor: Nossan Szavits, V.: Mehanika tla i stijena, 13. predavanje, Stabilnost
	kosina
Slika 2.13.	Višestruko retrogresivno klizanje
	izvor: Nossan Szavits, V.: Mehanika tla i stijena, 13. predavanje, Stabilnost
	kosina
Slika 2.14.	Shematski prikaz odrona
	izvor: Highland, L. M., Bobrowsky P.: The Landslide Handbook- A Guide
	to Undertanding Landslides, U.S. Geological Survey, Reston, Virginia,
	2008.
Slika 2.15.	Fizikalni opis odrona
	izvor: Barić, M.: Kinematička analiza stabilnosti blokova stijenske mase
	na kosini, Diplomski rad, Split, 2014.
Slika 2.16.	Shematski prikaz prevrtanja
	izvor: Highland, L. M., Bobrowsky P.: The Landslide Handbook- A Guide
	to Undertanding Landslides, U.S. Geological Survey, Reston, Virginia,
	2008.
Slika 2.17.	Primjer prevrtanja
	izvor: https://www.geotech.hr/prevrtanje-blokova/

Slika 2.18.	Shematski prikaz prevrtanja
	izvor: https://www.geotech.hr/prevrtanje-blokova/
Slika 2.19.	Prikaz djelovanja sila na izdvojenu lamelu
	izvor: Paska, K.: Sanacija klizišta gabionskim zidom, Završni rad,
	Varaždin, 2013.
Slika 2.20.	Primjer klizne plohe
Slika 3.1.	izvor: Soldo, B.: <i>Primjeri akutnih pojava masovnih padinskih klizanja i njihova sanacija</i> , predavanje na Danima ovlaštenih inženjera građevinarstva, Opatija, 2016. Prikaz sila na klizni blok u stanju mirovanja
	autorski rad
Slika 3.2.	Poligon sila
	autorski rad
Slika 3.3.	Vektor ubrzanja u smjeru inicirane sile
	autorski rad
Slika 3.4.	Prikaz kuta unutarnjeg trenja
	izvor: https://www.gradnja.me/clanak/512/%C4%8Cvrsto%C4%87a-na-
	smicanje-i-ugao-unutra%C5%A1njeg-trenja-tla
Slika 3.5.	Titranje mase na oprugi
	autorski rad
Slika 3.6.	Harmonička funkcija sinus
	izvor: https://s-cool.co.uk/a-level/maths/trigonometry/revise-it/graphs-of-
	trigonometric-functions
Slika 3.7.	Prigušeno harmonijsko titranje
	izvor:https://edutorij.e-skole.hr/share/proxy/alfresco-
	noauth/edutorij/api/proxy-guest/a46bb23b-608e-45b5-b7f6-
	c952a83441fa/prisilno-i-priguseno-titranje.html
Slika 3.8.	Shematski prikaz prigušenog titranja
	autorski rad
Slika 3.9.	Prikaz infinitezimalne impulsne pobude
	autorski rad
Slika 3.10.	Shematski prikaz djelovanja sila na točkastu masu
	autorski rad
Slika 3.11.	Shematski prikaz sustava s dva stupnjeva slobode
	autorski rad

Slika 3.12.	Shematski prikaz sustava s više stupnjeva slobode
	autorski rad
Slika 4.1.	Poligon sila kod djelovanja potresa
	izvor: Soldo, B.: Dodatno objašnjenje uz izvješća o cestovnim puzištima/
	klizištima na lokalnim i županijskim cestama Zagrebačke županije s
	naglaskom na potrese
Slika 4.2.	Klizište pod djelovanjem potresnog opterećenja
	izvor: https://slideplayer.com/slide/17866992/
Slika 4.3.	Vrijednosti horizontalnih ubrzanja za grad Varaždin
	izvor: <u>http://seizkarta.gfz.hr/hazmap/karta.php</u>
Slika 4.4.	Primjeri pukotine u kolniku ceste
	izvor: Soldo, B.: Dodatno objašnjenje uz izvješća o cestovnim puzištima/
	klizištima na lokalnim i županijskim cestama Zagrebačke županije s
	naglaskom na potrese
Slika 4.5.	Smanjenje utjecaja vertikalnog seizmičkog koeficijenta s porastom
	udaljenosti od epicentra potresa
	autorski rad
Slika 4.6.	Graf ovisnosti faktora sigurnosti o horizontalnom koeficijentu za različite
	nagibe kosina
	autorski rad
Slika 4.7.	Graf ovisnosti faktora sigurnosti o horizontalnom koeficijentu zajedno sa
	vertikalnim koeficijentom za različite nagibe kosina
	autorski rad
Slika 4.8.	Dijagrami za odabir kritičnog koeficijenta k_c
	izvor: Huang, W. (2018). Stability of unsaturated soil slopes under rainfall
	and seismic loading, Doctoral thesis, Nanyang Technological University,
	Singapore
Slika 4.9.	Translacijski i rotacijski mehanizam
	izvor: Huang, W. (2018). Stability of unsaturated soil slopes under rainfall
	and seismic loading, Doctoral thesis, Nanyang Technological University,
	Singapore
Slika 5.1.	Pojednostavnjeni prikaz Newmarkovog kliznog bloka
	autorski rad
Slika 5.2.	Kružna klizna ploha s prikazanim silama tijekom djelovanja potresa

	autorski rad
Slika 5.3.	Blok težine W na horizontalnoj podlozi
	autorski rad
Slika 5.4.	a-t dijagram
	autorski rad
Slika 5.5.	v-t dijagram
	autorski rad
Slika 5.6.	Primjer Newmarkove analize
	izvor: Roje-Bonacci, T.: Nasute građevine, Sveučilište u Splitu,
	Građevinsko-arhitektonski fakultet, Split, 2015.
Slika 5.7.	Dvosmjerno gibanje bloka
	izvor: Korzec, A., Jankowski R. (2020.): Extended Newmark method to
	assess stability of slope under bidirectional seismic loading
Slika 5.8.	Dijagram ovisnosti Ariasovog intenziteta i Newmarkovog pomaka
	izvor: Randall W. Jibson: Predicting Earthquake-Induced Landslide
	Displacement Using Newmark's Sliding Block Analysis
Slika 6.1.	Model nesaturiranog klizišta
	autorski rad
Slika 6.2.	Izračun faktora sigurnosti pomoću programa GEO5
	autorski rad
Slika 6.3.	Izračun faktora sigurnosti pod djelovanjem potresnog djelovanja pomoću
	programa GEO5
	autorski rad
Slika 6.4.	Model potpuno saturiranog tla
	autorski rad
Slika 6.5.	Izračun faktora sigurnosti pomoću programa GEO5
	autorski rad
Slika 6.6.	Izračun faktora sigurnosti pod djelovanjem potresnog djelovanja pomoću
	programa GEO5
	autorski rad
Slika 7.1.	Ovisnost faktora sigurnosti o omjeru horizontalnog i vertikalnog
	seizmičkog koeficijenta
	autorski rad
Slika 7.2.	Najpovoljniji i najkritičniji skupovi kod omjera horizontalnog i vertikalnog

	koeficijenta
	autorski rad
Slika 7.3.	Ovisnost pomaka o faktoru sigurnosti kod nesaturiranog tla
	autorski rad
Slika 7.4.	Akcelerogram zagrebačkog potresa 22.03.2020. sa horizontalnim
	koeficijentom ubrzanja 0,23
	izvor: https://link.springer.com/article/10.1007/s10518-021-01117-w
Slika 7.5.	Vizualni prikaz pomaka sa najvećim početnim faktorom sigurnosti kosine
	pomoću programa GEO5
	autorski rad
Slika 7.6.	Ovisnost faktora sigurnosti o omjeru horizontalnog i vertikalnog
	seizmičkog koeficijenta
	autorski rad
Slika 7.7.	Najpovoljnije i najkritičnije točke kod omjera horizontalnog i vertikalnog
	koeficijenta
	autorski rad
Slika 7.8.	Usporedba pomaka nesaturiranog i saturiranog tla
	autorski rad
Slika 7.9.	Akcelerogram zagrebačkog potresa 22.03.2020. sa horizontalnim
	koeficijentom ubrzanja 0,23
	izvor: https://link.springer.com/article/10.1007/s10518-021-01117-w
Slika 7.10.	Vizualni prikaz pomaka sa najvećim početnim faktorom sigurnosti kosine
	pomoću programa GEO5
	autorski rad
Slika 7.11.	Odnos posmičnog naprezanja i relativnih pomaka nesaturiranog i
	saturiranog tla kod djelovanja potresa
	autorski rad

11. POPIS TABLICA

Tablica 6.1. Ovisnosti koeficijenata o faktoru sigurnosti kod nesaturiranog tla Tablica 6.2. Ovisnosti koeficijenata o faktoru sigurnosti kod saturiranog tla

Sveučilište Sjever

VŽKO

N N

SVEUČILIŠTE SJEVER

IZJAVA O AUTORSTVU I SUGLASNOST ZA JAVNU OBJAVU

Završni/diplomski rad isključivo je autorsko djelo studenta koji je isti izradio te student odgovara za istinitost, izvornost i ispravnost teksta rada. U radu se ne smiju koristiti dijelovi tudih radova (knjiga, članaka, doktorskih disertacija, magistarskih radova, izvora s interneta, i drugih izvora) bez navođenja izvora i autora navedenih radova. Svi dijelovi tudih radova moraju biti pravilno navedeni i citirani. Dijelovi tudih radova koji nisu pravilno citirani, smatraju se plagijatom, odnosno nezakonitim prisvajanjem tuđeg znanstvenog ili stručnoga rada. Sukladno navedenom studenti su dužni potpisati izjavu o autorstvu rada.

Ja, <u>Matija Kancijan</u> (*ime i prezime*) pod punom moralnom, materijalnom i kaznenom odgovornošću, izjavljujem da sam isključivi autor/ica završnog/diplomskog (*obrisati nepotrebno*) rada pod naslovom <u>Utjecaj potresa na stabilnost kosina</u> (*upisati naslov*) te da u navedenom radu nisu na nedozvoljeni način (bez pravilnog citiranja) korišteni dijelovi tuđih radova.

> Student/ica: (upisati ime i prezime)

(vlastoručni potpis)

Sukladno Zakonu o znanstvenoj djelatnost i visokom obrazovanju završne/diplomske radove sveučilišta su dužna trajno objaviti na javnoj internetskoj bazi sveučilišne knjižnice u sastavu sveučilišta te kopirati u javnu internetsku bazu završnih/diplomskih radova Nacionalne i sveučilišne knjižnice. Završni radovi istovrsnih umjetničkih studija koji se realiziraju kroz umjetnička ostvarenja objavljuju se na odgovarajući način.

Ja, <u>Matija Kancijan</u> (*ime i prezime*) neopozivo izjavljujem da sam suglasan/na s javnom objavom završnog/diplomshog (*obrisati nepotrebno*) rada pod naslovom <u>Utjecaj potresa na stabilnost kosina</u> (*upisati naslov*) čiji sam autor/ica.

> Student/ica: (upisati ime i prezime)

(vlastoručni potpis)