Izrada makete dizala upravljane pomoću PLC-a i HMI dodirnog zaslona

Radovanović, Maja

Undergraduate thesis / Završni rad

2023

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: **University North / Sveučilište Sjever**

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:122:094704

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-12

Repository / Repozitorij:

University North Digital Repository

Završni rad br. 019/MEH/2023

Izrada makete dizala upravljane pomoću PLC-a i HMI dodirnog zaslona

Maja Radovanović, 0336048806

Varaždin, rujan 2023. godine

Odjel za mehatroniku Završni rad br. 019/MEH/2023

Izrada makete dizala upravljane pomoću PLC-a i HMI dodirnog zaslona

Student

Maja Radovanović, 0336048806

Mentor

Josip Srpak, dipl. ing. el., viši predavač

Varaždin, rujan 2023. godine

NOKTH UNIVERSITY

Prijava završnog rada

Definiranje teme završnog rada i povjerenstva

odjel z	a meha	troniku			
studii preddig	olomski	stručni	studij Mehatronika	_	
PRISTUPNIK Ma	ja Rado	vanovi	ć 0336048806		
DATUM 14.06.2	2023		^{KOLEGII} PLC sustavi upravljanja		
NASLOV RADA	Izrada	makete	nakete dizala upravljane pomoću PLC-a i HMI dodirnog zaslona		
NASLOV RADA NA ENGL. JEZIKU	Creatio	n of an	elevator model controled by PLC and HMI touch screen		
Josip	Srpak		viši predavač		
ČLANOVI POVJERENSTVA		Z	Zoran Busija, predavač		
			Doc.dr.sc. Dunja Srpak		
		J	osip Srpak, viši predavač		
		3 4	van Šumiga, viši predavač		
		5			

Zadatak završnog rada

019/MEH/2023

OPIS

VŽ KC

U ovom završnom radu potrebno je izraditi maketu te program za PLC i HMI zaslon kojima će se upravljati maketom dizala i pri tome detaljno opisati korištenu opremu.

U izradi završnog rada potrebno je:

- modelirati i izraditi maketu lifta,
- maketu opremiti senzorima položaja i pogonom lifta,
- napisati program za PLC i HMI zaslon, te testirati ispravnost kroz simulator,
- napraviti elektro i strojarsku dokumentaciju,
- testirati :rad makete,
- navesti moguća poboljšanja.

	BLIKA HRVATSKA
ZADATAK URUČEN 24.08.2023,	POTPIS MENTORA JOS MAN
	S SVEUČILIŠTE SIEVER

Sažetak

U ovom završnom rada je opisana izrada makete dizala upravljanog pomoću PLC-a i HMI dodirnog zaslona. Rad dizala je također simuliran HMI zaslonom. U prvom dijelu završnog rada opisani su korišteni dijelovi za izradu makete lifta, programabilni logički kontroler, HMI zaslon, induktivni senzor te istosmjerni motor i softveri koji su se koristili, a to su TIA Portal, Solidworks i EPLAN. U drugom dijelu je opisan rad PLC programa uz simulaciju lifta na HMI dodirnom zaslonu.

Ključne riječi: PLC, HMI dodirni zaslon, dizalo, modeliranje, maketa.

Abstract

In this final paper is described the creation of model of an elevator controlled by PLC and HMI touch screen. The operation of the elevator is also simulated by the HMI screen. In the first part of the final paper are described the parts used to create the elevator model, the programmable logic controller, the HMI screen, the inductive sensor and the DC motor and used softwares, which are TIA Portal, Solidworks and EPLAN. The second part describes the operation of the PLC program with the simulation of the elevator on the HMI touch screen.

Key words: PLC, HMI touch screen, elevator, modeling, model.

Popis korištenih kratica

CPU	Centralna procesorska jedinica
DC	Istosmjerna struja (engl. Direct Current)
g	ubrzanje sile teže, 9.81m/s ²
HMI	engl. Human-Machine interface
LD	Ljestvičasti dijagram
m	masa, kg
Μ	okretni moment, Nm
NO	Normalno otvoreni
PLC	Programabilni logički kontroler
r	visina, m

Sadržaj

1. UVOD1
1.1. Zadatak završnog rada1
2. Korištena oprema
2.1. Programabilni logički kontroler 2 2.1.1. Programski jezici PLC-a 5
2.1.1.1. Ljestvičasti dijagram
2.1.1.2. Instrukcijske liste
2.1.1.3. Funkcijski blokovski dijagram
2.2. HMI dodirni zaslon 7 2.3. Induktivni senzor 8
2.4. Istosmjerni motor za pokretanje makete10
3. Korišteni programi
3.1. TIA Portal
4. Izrada PLC programa i simulacije lifta
 4.1. Popis ulaza, izlaza i pomoćnih varijabli PLC-a
5. Zaključak
Popis slika
Popis tablica

1. UVOD

Zbog svoje nefleksibilnosti i složenosti relejni sustavi su zamijenjeni pouzdanijim i fleksibilnijim programabilnim logičkim kontrolerom. PLC se zbog toga sve više upotrebljava za upravljanje raznim industrijskim postrojenjima, strojevima itd. Te ga se u ovom završnom radu koristi za upravljanje lifta, koji može služiti za prijevoz ljudi sa jednog kata na drugi ili za prijevoz tereta. Uz PLC se može koristiti i pripadni HMI (engl. Human-Machine interface) dodirni zaslon na kojem se može izraditi simulacija lifta. Program za upravljanje procesima ili strojevima se izrađuje u softverima koji ovise o proizvođaču PLC-a, tako se u ovom završnom radu koristi Siemensov PLC S7-1200 i HMI zaslon KTP700 Basic te uz njih TIA portal, na kojem se izrađivao program kojim se upravljalo maketom lifta.

1.1. Zadatak završnog rada

Zadatak ovog završnog rada je izrada makete te programa za PLC i HMI zaslon kojima će se upravljati maketom dizala i pri tome detaljno opisati korištenu opremu. U izradi je potrebno modelirati i izraditi maketu lifta, opremiti ju senzorima položaja i pogonom lifta, napisati program za PLC i HMI zaslon, te ispitati ispravnost kroz simulator, napraviti elektro i strojarsku dokumentaciju te testirati rad makete.

2. Korištena oprema

2.1. Programabilni logički kontroler

Prvi programabilni logički kontroler, PLC, razvijen je krajem 60-ih početkom 70-ih godina radi unaprjeđenja industrijskih pogona, često se naziva srcem upravljačkog sustava. Prije razvijanja PLC-a, relejni sustavi su se koristili za upravljanje industrijskim pogonima, prikazani na slici 2.1. Oni su za razliku od PLC-a bili složeniji i nefleksibilni, a kvarom jednog releja u sustavu, prvo je bilo potrebno naći taj relej ispitivanjem cijelog sustava kako bi ga se moglo zamijeniti s novim, prilikom čega bi cijeli sustav bio neupotrebljiv. [1]

Iz tih razloga izdan je zahtjev za prijedloge za zamjenu ožičenja relejnih sustava nakon čega je izrađen prvi PLC 1969.g. Prvi PLC, Modicon 084, je bio 84. projekt Bedford Associates te je zbog toga prvi PLC bio označen 084. [2]

Slika 2.1: Automatizacija relejnom logikom [3]

"Za razliku od osobnih računala, PLC-ovi se najčešće koriste u industrijskim postrojenjima zbog njihove otpornosti na vlagu, visoku i nisku temperaturu, prašinu i ostalo." [4]

Prednosti PLC-a [5]:

- Pouzdanost nema mehaničkih pokretnih dijelova, otporan na pogonske uvijete rada, minimalne greške prilikom ožičenja itd.,
- Adaptivnost isti program se može prenijeti na drugi PLC uređaj kada je potreban isti program ili program s manjim izmjenama, a što uzrokuje smanjenje vremena programiranja i vremena potrebnog za otklanjanje grešaka
- Fleksibilnost manje je vremena potrebno za promjenu, ispravak ili doradu programa

- Naprednija funkcionalnost mogućnost upotrebe PLC-a za jednostavnije i kompleksnije radnje
- Komunikacija olakšavanje prikupljanja podataka sa drugih uređaja i obrađivanje prikupljenih informacija sa operatorskih panela, drugih PLC uređaja i nadzornih upravljačkih računala
- Brzina mogućnost vrlo brzih reakcija na pojavu nekih signala
- Dijagnostika brzo i jednostavno uklanjanje grešaka

Dijelovi PLC-a [1]:

- Ulazni i izlazni dio
- CPU (Centralna procesorska jedinica)
- Memorijski blok
- Mrežni modul napajanja
- Komunikacijsko sučelje
- Moduli za proširenje

Navedeni dijelovi PLC-a su prikazani na slici 2.2.

Slika 2.2: Dijelovi PLC-a [5]

Princip rada PLC-a se temelji na praćenju stanja na ulazu nakon čijih se promjena mijenjaju stanja na izlazu. Ciklus obrade podataka PLC-a odvija se u beskonačnoj petlji i sastoji se od 4 dijela, prikazani na slici 2.3 [1]:

 Obrada ulaznog signala – očitavanje podataka o stanju ulaza te njihovo prenošenje u memoriju procesora

- Obrada programa obrada ulaznih podataka prema logici programa od korisnika, rezultat se šalje u izlazni memorijski registar procesora
- Prijenos obrađenog programa na izlaze prijenos spremljenih i obrađenih podataka na izlaze PLC uređaja
- Procesorsko organizacijsko vrijeme i komunikacija odvijanje operacija koje su potrebne kako bi ispravno funkcionirao i povezao operacijski sustav sa vanjskim jedinicama

Slika 2.3: Ciklus rada PLC uređaja [5]

Korišteni PLC je S7-1200, prikazan na slici 2.4.

Slika 2.4: Korišteni PLC S7-1200

2.1.1. Programski jezici PLC-a

Kako bi PLC mogao upravljati nekim sustavom potrebno je kreirati program pomoću programskih jezika. Nakon kreiranja programa PLC izvodi taj program te upravlja ulaznim i izlaznim modulima tj. određenim procesom. [1]

"Programski jezici se izvode na osobnim računalima koji imaju programsku podršku za određeni PLC uređaj, te su pristupačna platforma programatora za uređivanje, instaliranje i sinkronizaciju programa na PLC uređaj." [1]

Kako bi se inženjerima i tehničarima omogućio što lakši prijelaz sa relejne tehnike na logiku PLC-a, PLC se od početka njegovog korištenja programirao u ljestvičastom dijagramu jer je najviše sličio shemama relejne logike. Taj se jezik iz istog razloga i danas najviše u upotrebljava. [4]

Dvije najčešće korištene skupine programskih jezika su [6]:

- Tekstualni
 - Instrukcijske liste (STL)
 - Strukturirani tekst (SCL)
- Grafički
 - Ljestvičasti dijagram (LD)
 - Funkcijski blokovski dijagram (FBD)
 - Senkvencijalni fukcijski dijagram (SFC)

2.1.1.1. Ljestvičasti dijagram

Ljestvičasti dijagram (engl. Ladder diagram), standardizirani programski jezik PLC-a, naziv je dobio zbog izgleda koji podsjeća na ljestve. LD je jedan od grafičkih programskih jezika, što znači da koristi simbole za programiranje umjesto teksta. [4]

Na slici 2.5. prikazana je strujna shema i ljestvičasti dijagram, a oboje obavljaju istu funkciju uključenja i isključenja motora. Strujne sheme prikazuju stvarni tok struje u nekom strujnom krugu, dok je LD dio upravljačkog softvera PLC-a. Na toj slici se vide sličnosti LD-a i strujne sheme, razlika je u tome što se u strujnoj shemi prikazuju simboli stvarnih uređaja, a u LD-u slični simboli, ali predstavljaju naredbe kojima se upravlja programom. U strujnoj shemu se prikazuje stanje kontakata (otvoreni ili zatvoreni) dok se kod LD prikazuje istinitost naredbe (Logički '1' ili '0'). [5]

Slika 2.5: Usporedba strujne sheme i ljestvičastog dijagrama [5]

2.1.1.2. Instrukcijske liste

Instrukcijske liste (engl. Statement list) je programski jezik PLC-a koji koristi naredbe na razini asemblerskog jezika koje se izvršavaju redoslijedom koji je napisan u programu, a zatim se ponavlja ispočetka. [1]

Instrukcije se u ovom programskom jeziku koriste kako bi direktno upravljali CPU. [6]

Često se koristi kada je potrebno da program bude učinkovit u smislu uporabe procesorske memorije i vremena skeniranja ciklusa i kada su potrebne određene funkcije koje nije moguće napraviti drugim programskim jezikom, npr. LD. [7]

Na slici 2.6 je prikazan primjer STL programskog jezika.

Slika 2.6: Primjer STL programskog jezika [8]

2.1.1.3. Funkcijski blokovski dijagram

Funkcijski blokovski dijagram (engl. Function Block Diagram) je programski jezik koji koristi blokove kojima su prikazani ulazni i izlazni moduli i naredbe. Programiranje se radi povezivanjem blokova. Na slici 2.7. je prikazan funkcijski blok gdje se na ulazu dovode signali sa izlaza drugih blokova zatim se ispituju i u skladu s ispitivanjem se na izlazu generira izlazni signal. Neki od najosnovnijih funkcija su I, ILI, NE. [1]

Logička funkcija I aktivirati će izlaz kada su svi ulazi ,npr. A i B, istiniti, tj. logička '1'. Funkcija ILI će aktivirati izlaz ako je barem jedan od ulaza istiniti, npr. ili A ili B. Kod NE funkcije izlaz će se aktivirati ako je signal na ulazu neistinit, tj. logička '0'. Od tih osnovnih logičkih funkcija mogu se dobiti funkcije NI, NILI i isključivo ILI. [1]

Slika 2.7: Funkcijski blok ILI [9]

2.2. HMI dodirni zaslon

HMI dodirni zaslon (engl. Human-Machine Interface) je korisničko sučelje koji služi za nadzor, vizualizaciju tehnoloških procesa te za povezivanje osobe s određenim sustavom ili uređajem. [10]

U ovom završnom radu se koristio HMI zaslon KTP700 Basic (slika 2.8). Pomoću TIA Portala se na HMI dodirnom zaslonu mogu prikazati tipkala, prekidači, lampice, slike itd. A kako bi tipkala, lampice i drugo funkcionirali oni se programiraju PLC programom.

SIEMENS		SIMATIC HMI
Udi u lift Vrata otvorena Kvar Motora Prekoračena Težina	3. KAT 2. KAT 2. KAT 1. KAT Motor u kvaru OFF ♡ ON ♡ Reset	2 Prekoračenje težine OFF ↓ ON ↓
F1 F2	F3 F4 F5 F6	F7 F8

Slika 2.8:HMI dodirni zaslon KTP700 Basic

2.3. Induktivni senzor

Induktivni senzor je bez kontaktni senzor koji detektira blizinu jedino metalnih predmeta zbog čega ih ne metalni predmeti neće aktivirati. Oni rade na principu oscilatora na način da oscilator i zavojnica stvaraju visokofrekventno elektromagnetsko polje gdje se pri ulasku predmeta induciraju vrtložne struje koje također stvaraju elektromagnetsko polje koje će se suprotstaviti polju zavojnice i time se smanjuju amplitude oscilacije. Kada se ta promjena detektira prenosi se na pojačalo koje će aktivirati izlazni kontakt. [11]

Prednosti induktivnih senzora [12]:

- Jednostavno postavljanje
- Rezultati su predvidljivi
- Ima duži vijek trajanja
- Može izdržati teške uvjete okoline

Nedostatci induktivnog senzora [12]:

- Ima ograničene udaljenosti za očitavanje, to ovisi o vrsti, obliku i veličini metala koji se detektira i veličini zavojnice koja se koristi u induktivnom senzoru
- Detektira samo metalne predmete

Induktivni senzor se, kako je prikazano na slici 2.9, sastoji od napajanja, pojačala, detektora, oscilatora i zavojnice. [11]

Slika 2.9: Dijelovi induktivnog senzora [11]

Karakteristike korištenog induktivnog senzora (slika 2.10) [13]:

- Detektira predmet na udaljenosti do 8mm
- Tip izlaza: PNP NO
- Napajanje: DC 6-36V
- Izlazna struja: 300mA

Slika 2.10: Korišteni induktivni senzor, NO

2.4. Istosmjerni motor za pokretanje makete

Istosmjerni motor je električni stroj koji pretvara električnu energiju istosmjerne struje u mehaničku. Dijelovi istosmjernog motora su stator, nepomični dio motora, armatura koja se okreće, komutator i četkice. [14]

Stator se nalazi s vanjske strane motora i sastoji se od trajnih magneta ili elektromagnetskih namota, a rotor se nalazi s unutarnje strane motora i sadrži zavojnice koje napaja istosmjerna struja. Napajanjem motora istosmjernom strujom stvara se magnetsko polje u statoru koje onda privlači i odbija magnete na rotoru što uzrokuje rotaciju rotora. Motor mora imati i komutator koji omogućuje rotaciju rotora. Komutator mijenja smjer struje kroz rotor kako bi se okrenulo magnetsko polje i rotor bi se nastavio vrtjeti. [15]

Istosmjerni motori se primjenjuju u dizalicama, pumpama, transportnim trakama, alatnim strojevima, igračkama itd. [15]

Prednosti istosmjernih motora su [16]:

- Jednostavnija montaža
- Visoka snaga pokretanja i okretni moment
- Brzo vrijeme odziva na pokretanje, zaustavljanje i ubrzanje
- Regulacija brzine vrtnje

Karakteristike korištenog istosmjerni motor s reduktorom (slika 2.11): [17]

- Napajanje: DC 6V
- Brzina: 15 okretaja/minuti
- Struja praznog hoda: 35 mA
- Okretni moment: 7 kg/cm (0.6864 Nm)

Slika 2.11: Korišteni istosmjerni motor [17]

Ako je potrebno da vrijeme kojim lift prijeđe udaljenost sa jednog na drugi kat bude 10 sekundi, treba prilagoditi broj okretaja u minuti motora. Korišteni navoj je M10 sa korakom navoja 1.5mm, udaljenost između katova je 134mm. Ako se podjeli udaljenost između katova sa korakom navoja dobiti će se broj okretaja koji će matica napraviti kako bi prešla udaljenost od 134mm, a to je 89.33 okretaja. Nakon toga se taj broj okretaja podjeli sa 0.167min, što je 10 sekundi, dobije se da je potrebno 534.91 okretaj/minuti motora kako bi lift prešao udaljenost od jednog kata do drugog u 10 sekundi.

3. Korišteni programi

3.1. TIA Portal

TIA Portal (engl. Totally Integrated Automation Portal) je Siemensov softver koji objedinjuje više SIMATIC proizvoda u jednu aplikaciju. Njime se može konfigurirati i programirati PLC i napraviti vizualizacija na HMI (engl. Human-Machine interface) dodirnom zaslonu. Jedan od SIMATIC proizvoda koji se koristi za programiranje PLC-a je STEP 7 Basic (Slika 3.1), dok se drugim, WinCC Basic (Slika 3.2), izrađuje vizualizacija programa na HMI ekranu [5].

Prilikom rješavanja problema u TIA Portalu najčešće se prate sljedeći koraci [5]:

- 1. Kreiranje projekta
- 2. Konfiguracija potrebnog sklopovlja
- 3. Povezivanje uređaja
- 4. Programiranje PLC-a
- 5. Konfiguracija vizualizacije
- 6. Učitavanje konfiguracijskih podataka
- 7. Korištenje dijagnostičkih funkcija

Slika 3.1: Izgled korisničkog sučelja STEP 7

ct Edit View Insert Onlini 🎦 🔒 Save project 📑 🐰 🧃	e Options Tools	Window Help 🗄 🔂 🛄 🗓 🚆 🎇 💋 Go online 🖉 Go	offline 🛔 🖪 📰 🗶 🖃 🛄 i Search in	project>		Totally Integrated Auto	omation PORTA
roject tree	🛙 📢 zavrsni_4	HMI_1 [KTP700 Basic PN] Screens	Izvan lifta		_ # = ×	Toolbox	
Devices						Options	
8	1	BIUSAt == t	A 2 🗞 1 🖉 2 🚍 2 🛶 2 🗐 2 🖉 1 😤	호비호블호 영 1는호G		N 2 11 11 1	
	_				^	M Basic objects	
💥 Default tag table [~	CUENAENIC				basic objects	
C PLC data types		SIEMENS		SIMATIC HIV		/ 🔍 🔵 🔳	Α
Watch and force tables							
Online backups						L	
Traces							
OPC UA communicat		· · · · · · · · · · · · · · · · · · ·					
Device proxy data							
Program info	=						
PLC alarm text lists		IIdi u lift				✓ Elements	
Local modules			3. KAT			-	
HMI_1 [KTP700 Basic					-	<u> </u>	5
T Device configuration						0 1	
Solution Contine & diagnostics		Winderseifigerenden					
T Runtime settings		Kyar Motora					
 E Screens 		Kvar Motora					
Add new screen							
Home					1		
izvan liitta			2. KAT			✓ Controls	
	~				1	🖂 🖂 🌆 🗔	
III Screen management	>	Brokoračona		/ /		🚹 🛄 👖 💷	1 💴
tails view		Tožina		<u></u>		0	
					1		
			1 1/1				
ne					1		
					1		
	4			> 100%			
	Invan lifta	[Screen]		Descetter Distance Distance			
	izvan litta	[screen]		Properties Info Diagnostics		> Cambias	
	Propertie	Animations Events Texts			_	oraphics	_

Slika 3.2: Izgled korisničkog sučelja WinCC

Blokovi koji se koriste prilikom programiranja PLC-a su [5]:

- Organizacijski blok služi za strukturu programa
- Funkcija koristi se za izvođenje određenih operacija bez spremanja podataka u memoriju
- Funkcijski blok izvodi određene operacije i koristi podatkovni blok za parametre i statičke podatke
- Podatkovni blok služi za spremanje podataka za blokove koda

TIA Portal je korišten za programiranje lifta i izradu simulacije lifta.

3.2. Solidworks

Solidworks je softver koji se zbog svojih značajki i visoke funkcionalnosti koristi u više struka i industrija. On je jedan od najpopularnijih softvera za dizajnere i inženjere. Solidworks koristi parametarski dizajn, a to znači da se može vidjeti kako promjene mogu utjecati na susjedne komponente ili na cijeli sklop. Solidworks se koristi u zrakoplovnoj industriji, prijevozu, znanostima o životu, energiji, procesima i za pakiranje potrošačke robe. Njega koriste inženjeri strojarstva, dizajneri, proizvodni inženjeri, umjetnici, arhitekti, inženjeri elektrotehnike, inženjeri procesa i cjevovoda itd. [18]

Neke od Solidworksovih značajki su: [18]

- jednostavan 3D CAD dizajn,
- poboljšanja učinkovitost uz korištenje predložaka,
- ubrzavanje procesa automatizacijom i ponovnom upotrebom dizajna
- ima alate za procjenu troškova
- mogućnost provjere smetnji za rano uočavanje potencijalnih rizika
- brza izrada 2D crteža za proizvodnju
- laka izrada animacija i foto-realističnih prikaza

Solidworks je korišten za izradu 3D modela makete lifta, za provjeru sklopa i izradu radioničkih crteža. Maketa se sastoji od kućišta i samog lifta. Kućište je izrezano iz pleksiglasa, a lift je isprintan 3D printerom. Kućište se sastoji od prednjeg dijela (Slika 3.3), postolja (Slika 3.4), lijevog (Slika 3.5), desnog (Slika 3.6), gornjeg dijela (Slika 3.7), vrata (Slika 3.8) i dodataka za držanje vrata (Slika 3.9). Lift se sastoji od postolja i gornje strane koje su jednake (Slika 3.10) i strana lifta, koje su također jednake (Slika 3.11). A kako bi motor stajao uspravno iznad navojne šipke također je 3D printerom isprintan držač motora prikazan na slici 3.12 i kako bi se taj motor spojio sa navojnom šipkom isprintan je i dio prikazan na slici 3.13. Korištena je navojna šipka, za kretanje lifta gore ili dolje pomoću matice, koja je također modelirana u Solidworks-u (Slika 3.14), kako se lift ne bi okretao oko navojne šipke u maketu je također stavljena metalna šipka, prikaz modela se nalazi na slici 3.15. Na slici 3.16 prikazan je 3D model makete lifta, na slici 3.17 je prikazana izrađena maketa.

Prilikom modeliranja makete bilo je potrebno uzeti u obzir materijal od kojeg će se izraditi, pa je tako sam lift, budući da se printao 3D printerom, modeliran na način da se ne troši puno materijala.

Nakon što su u Solidworks-u provjerene sve dimenzije i sklop modela makete lifta, bilo je potrebno izraditi plan rezanja svih dijelova koji će se rezati iz pleksiglasa, visine 1m, dužine 1m i širine 5mm (Slika 3.18).

Slika 3.3: Model prednjeg dijela kućišta

Slika 3.4: Model postolja kućišta

Slika 3.5: Model lijevog dijela kućišta

Slika 3.6: Model desnog dijela kućišta

Slika 3.7: Model gornjeg dijela kućišta

Slika 3.8: Model vrata na katovima

Slika 3.9: Modeli dodataka za držanje vrata

Slika 3.10: Model postolja i gornje strane lifta

Slika 3.11: Model strana lifta

Slika 3.12: Model držača motora

Slika 3.13: Model dijela za spajanje motora sa navojnom šipkom

Slika 3.14: Model navojne šipke

Slika 3.15: Model metalne šipke za stabilizaciju lifta

Slika 3.16: Prikaz 3D modela makete lifta

Slika 3.17: Prikaz izrađene makete lifta

Slika 3.18: Plan rezanja dijelova makete lifta

3.3. EPLAN

"EPLAN pruža programska rješenja i usluge na području elektrotehnike, automatizacije i mehatronike." [19]

To je softver kojim se projektiraju strojevi i upravljački ormari. On pojednostavljuje zahtjevne inženjerske procese. [19]

Pojednostavljuje se planiranje projekta, dokumentacije, izrade projekta te upravljanje automatizacijom projekta. Uz pojednostavljanje navedenih procesa prednosti EPLAN-a su ubrzavanje projektiranja i mogućnost projektiranja na bilo kojem jeziku. [20]

Pomoću ovog programa izrađene su sheme spajanja PLC-a sa ostalim dijelovima makete lifta, kao što su induktivni senzor i motor, prikazano na slikama 3.19.

Slika 3.19: Shema spajanja makete lifta

4. Izrada PLC programa i simulacije lifta

4.1. Popis ulaza, izlaza i pomoćnih varijabli PLC-a

U tablici 4.1 je prikazan popis ulaznih varijabli PLC-a.

Naziv	Adresa	Komentar
S1	I0.0	Induktivni senzor na 1. katu
S2	I0.1	Induktivni senzor na 2. katu
S3	I0.2	Induktivni senzor na 3. katu

Tablica 4.1: Popis ulaznih varijabli PLC-a

U tablici 4.2 je prikazan popis izlaznih varijabli PLC-a.

Naziv	Adresa	Komentar		
SPUSTANJE_LIFTA	Q0.0	Izlaz za pokretanje motora, spuštanje lifta		
DIZANJE_LIFTA	Q0.1	Izlaz za pokretanje motora, dizanje lifta		

Tablica 4.2: Popis izlaznih varijabli PLC-a

U tablici 4.3 je prikazan popis pomoćnih varijabli PLC-a

Naziv	Adresa	Komentar
G1	M4.6	Tipka za gore na 1. katu
G2	M5.0	Tipka za gore na 2. katu
D2	M4.7	Tipka za dolje na 2. katu
D3	M7.3	Tipka za dolje na 3. katu
P_G1K2	M5.6	Pritisnuta tipka za gore na katu 1, lift se nalazi na 2. katu
P_G1K3	M6.4	Pritisnuta tipka za gore na katu 1, lift se nalazi na 3. katu
P_G2K1	M6.1	Pritisnuta tipka za gore na katu 2, lift se nalazi na 1. katu
P_G2K3	M6.2	Pritisnuta tipka za gore na katu 2, lift se nalazi na 3. katu
P_D2K1	M1.0	Pritisnuta tipka za dolje na katu 2, lift se nalazi na 1. katu

P_D2K3	M1.1	Pritisnuta tipka za dolje na katu 2, lift se
P_D3K1	M6.3	Pritisnuta tipka za dolje na katu 3, lift se
		nalazi na 1. katu
P D3K2	M1.2	Pritisnuta tipka za dolje na katu 3, lift se
		nalazi na 2. katu
SPUSTANJE_2	M1.7	Pom. var. za spuštanje lifta
SPUSTANJE_3	M1.3	Pom. var. za spuštanje lifta do 2. kata
SPUSTANJE_4	M5.5	Pom. var. za spuštanje lifta do 1. kata
DIZANJE_2	M2.0	Pom. var. za dizanje lifta
DIZANJE_3	M1.4	Pom. var. za dizanje lifta do 3. kata
DIZANJE_4	M6.0	Pom. var. za dizanje lifta do 2. kata
		Izlaz brojača pomoću kojeg se određuje
КАТ	MW2	na kojem se katu nalazi lift
SR_IDI_K1	M6.5	pom. var. set reset tipki za 1. kat
SR_IDI_K2	M10.7	Pom. var. set reset tipke 2. kat u liftu
SR_IDI_K3	M4.3	pom. var. set reset tipki za 3. kat
		Nakon što se pritisne jedna od tipki za 1.
ZADRZI_IDI_K1	M6.6	kat ova pom. var. se neće isključiti dok
		lift nedođe na 1.kat
		Nakon što se pritisne tipka za gore na
ZADRZI_G2	M4.2	2.katu ova pom. var. se neće isključiti
		dok lift nedođe na 2.kat
		Nakon što se pritisne tipka za dolje na
ZADRZI D2	M4.5	2.katu ova pom. var. se neće isključiti
		dok lift nedođe na 2.kat
		Nakon što se pritisne jedna od tipki za 3.
ZADRZI IDI K3	M4.4	kat ova pom. var. se neće isključiti dok
		lift nedođe na 3.kat
		Nakon što se pritisne tipka za 2.kat u liftu
ZADRZI KAT2	M9 5	ova pom, var, se neće iskliučiti dok lift
	1112.5	nedođe na 2 kat
Tinka OTV VR	M9 7	Tinka u liftu za otvaranie vrata
Tipka_VIV_VA	N100	Tipka u intu za otvaranje vrata
прка_дату_ук	W110.0	прка и пни za zatvaranje vrata

SR_tip_OTV_VR	M10.1	Pom. var. za set reset tipke za otvaranje
UIVAKANJE_VR	M7.5	Pom. var. za otvaranje vrata (traje 28)
OTVARANJE VR 1	M8.5	Pom. var. za prikaz otvaranja vrata lifta
		na 1. katu
OTVARANIE VR 2	M8.3	Pom. var. za prikaz otvaranja vrata lifta
		na 2. katu
OTVADANJE VD 2	N/0 1	Pom. var. za prikaz otvaranja vrata lifta
UIVARANJE_VR_5	IV18.1	na 3. katu
ZATVARANJE_VR	M7.6	Pom. var za zatvaranje vrata (traje 2s)
7ATVADANIE VD 1	MQ 1	Pom. var. za prikaz zatvaranja vrata lifta
	1017.1	na 1. katu
	MOO	Pom. var. za prikaz zatvaranja vrata lifta
LAIVAKANJE_VK_2	M9.0	na 2. katu
	M0 7	Pom. var. za prikaz zatvaranja vrata lifta
LAIVAKANJE_VK_3	M8./	na 3. katu
VR_OTV	M7.7	Vrata su otvorena
VD OTV 1	M8.6	Pom. var. za prikaz otvorenih vrata lifta
VK_OIV_I		na 1. katu
VD OTV 2	M Q 4	Pom. var. za prikaz otvorenih vrata lifta
VK_OIV_2	1/10.4	na 2. katu
VR OTV 3	M8.2	Pom. var. za prikaz otvorenih vrata lifta
VK_01V_5		na 3. katu
VR_ZATV	M8.0	Vrata su zatvorena
VD 7ATV 1	M0 4	Pom. var. za prikaz zatvorenih vrata lifta
VK_ZAIV_I	1917.4	na 1. katu
VD 7ATV 2	M0.2	Pom. var. za prikaz zatvorenih vrata lifta
	1417.3	na 2. katu
VR ZATV 3	M9 2	Pom. var. za prikaz zatvorenih vrata lifta
VK_ZATV_3	1019.2	na 3. katu
Tinka F8 alarm tažina	M10.2	Tipka F8 na HMI ekranu, za
	1110.2	prekoračenje dopuštene težine u liftu
R tinka Alarm tezina	M10.5	Tipkom F7 na HMI ekranu se isključi
		alarm za prekoračenje dop. težine

SR_Alarm_tezina	M10.4	Pom. Var. za uključivanje i isključivanje lampice
Lampica_Alarm_težina	M10.3	Lampica koja se uključi kada je prekoračena dopuštena težina u liftu
Kvar_motora	M10.6	Motor (brojač) je u kvaru

Tablica 4.3: Popis pomoćnih varijabli PLC-a

4.2. Izrada simulacije lifta na HMI ekranu

Za simulaciju rada lifta koristi se HMI ekran. Tako se na početnom ekranu može odabrati odakle se želi početi simulacija "Izvan lifta" ili "U liftu" (Slika 4.1) odabirom istoimene tipke.

Slika 4.1: Početni ekran HMI ekrana

Ako se odabere da se želi započeti simulacija izvan lifta pritiskom na istoimenu tipku HMI ekran će se zamijeniti na ekran prikazanim na slici 4.2. U gornjem lijevom kutu ekrana je tipka "Uđi u lift" koja služi za prebacivanje na ekran "U liftu" gdje su sve tipke koje bi se nalazile unutar

lifta. Ispod te tipke je napisana informacija jesu li vrata lifta zatvorena, otvorena, zatvaraju li se ili otvaraju, a ispod toga su 2 crvene lampice jedna koja signalizira kvar motora, tj. brojača kojim se simulira rad motora, te druga lampica koja će signalizirati da je prekoračena dopuštena težina u liftu te lift neće moći krenuti dok se težina ne smanji. Zatim desno na sredini ekrana su prikazani katovi prvi, drugi i treći, te sa lijeve strane tipke za poziv lifta i sa desne su slike koje se izmjenjuju ovisno o tome jesu li vrata zatvorena, otvorena ili se zatvaraju ili otvaraju, po tim slikama se također može vidjeti na kojem se katu lift nalazi, tj. na kojem su katu vrata lifta otvorena. S desne strane svakog kata su zelene lampice koje signaliziraju gdje se lift nalazi. Nakon toga s desne strane ekrana se može vidjeti pravokutnik u kojem će biti ispisan broj kata na kojem se lift nalazi i odmah ispod toga u kvadratu će se prikazati strelica u smjeru u kojem se lift kreće, strelica prema gore signalizira dizanje lifta, a strelica prema gore spuštanje lifta.

Slika 4.2: HMI ekran "Izvan lifta"

Na drugom ekranu "U liftu" (slika 4.3) su tipke i ekrani koji bi se nalazili unutar lifta uključujući simulacija otvaranja ili zatvaranja vrata. Sa lijeve strane lifta su tri tipke pomoću kojih
se odabire kat na koji se želi ići, te 2 tipke za otvaranje i zatvaranje vrata. Na sredini ekrana su prikazane slike koje se izmjenjuju ovisno o tome otvaraju li se vrata, zatvaraju ili su zatvorena, otvorena. Sa desne strane ekrana prvo je tipka "Izađi iz lifta" kojom se možemo vratiti na ekran "Izvan lifta". Ispod toga se nalazi pravokutnik u kojem će se prikazati na kojem se katu lift nalazi i ispod čega će se prikazivati strelice gdje se kreće lift, prema gore ili prema dolje. U desnom donjem kutu se nalazi lampica za signalizaciju prekoračene dopuštene težine lifta.

Slika 4.3: HMI ekran "U liftu"

4.3. Programski kod

Za početak programskog koda u Network-u 1 (Slika 4.4), 2, 3 i 4 su programirane tipke za poziv lifta, to su tipke koje se nalaze izvan lifta na svakom katu. Kroz 3 kata koriste se 4 tipke, po jedna tipka na prvom i zadnjem katu, a na drugom katu su dvije tipke. Na HMI ekranu su te tipke prikazane strelicama, smjer strelice označava gdje se nalazi kat na koji se ide, gore ili dolje, u programu su te tipke označene sa G1, G2, D2 i D3. Brojevi u oznakama tipki označavaju na kojem se katu tipke nalaze, G označava strelicu prema gore, a D označava strelicu prema dolje. U svakom

od Networka 1, 2, 3 i 4 programirane su 1 od 4 tipke. Npr. U Networku 1 nakon poziva lifta na kat 1 pritiskom na tipku G1 provjerava se na kojem se katu lift nalazi te ovisno o tome na kojem se katu nalazi lift se pokreće motor lifta, tj. Lift se spušta ili diže, na isti način rade i ostala 3 Networka.

Slika 4.4: Network 1

Networku 5 (Slika 4.5), 6 (Slika 4.6), 7 (Slika 4.7) i 12 (Slika 4.8) služe tome da, ako je u nekom trenutku pritisnuta tipka za poziv na 2. kat, nakon što je lift već pozvan na 1.kat i počeo se spuštati sa 3. kata, ali nije još prošao 2.kat, da lift stane na 2. katu na 5 sekundi. Network 11, 13 i 14 funkcioniraju na isti način kao Network 5, 6 i 7 jedina razlika je u tome da se lift diže sa 1. kata prema trećem i provjerava se da lift nije već prošao drugi kat.

Slika 4.5: Network 5

Slika 4.7: Network 7

Slika 4.8: Network 12

Network 8 (Slika 4.9), 9 (Slika 4.10) i 10 (Slika 4.11) služi za pamćenje da lift treba doći do 1. kata, ako su u isto vrijeme pritisnute tipke za 2. i 1. kat. To se postiže pomoćnom varijablom "SR_IDI_K1" koja će se uključiti kada je pritisnuta jedna od tipki za poziv lifta na 1. kat, jedna se nalazi izvan lifta, "G1", a druga unutar lifta, ""Katovi."1"", i neće se isključiti sve dok lift ne dođe do 1. kata. Ta varijabla, uz uvjet da nije uključen ili isključen timer iz Network-a 6, utječe na varijablu "ZADRZI IDI K1" koja se koristi kao uvjet dalje u programu. Network 15, 16 i 17

funkcioniraju na isti način kao Network 8, 9 i 10 s razlikom da se pamti da lift treba doći do 3. kata.

Slika 4.11: Network 10

Network 18 (Slika 4.12) skup uvjeta koji služe za spuštanje lifta do 1. kata, što se postiže uvjetom da izlaz brojača "KAT" bude različit od 0. Lift će se spuštati pod uvjetima da je:

- Pritisnuta tipka G1, a lift se nalazi na 2.katu "P_G1K2",
- Ako je pritisnuta tipka G1, a lift se nalazi na 3. katu "P_G1K3",

- Ako se lift nalazi na 2. katu te je pritisnuta jedna od tipkala za poziv lifta na 1. kat
- Ako se lift nalazi na 3. katu i unutar lifta je pritisnuta tipka za 1. kat ili je uz tipku za poziv lifta na 1. kat pritisnuta jedna od tipkala za poziv na 2. kat
- Zadnji uvjet služi kao povratna veza iste varijable kako bi nastavila sa radom ako se uvjet koji je uključio pomoćnu varijablu "SPUSTANJE 4" isključio.

Slika 4.12: Network 18

Network 19 (Slika 4.13) je skup uvjeta koji služi za spuštanje lifta do 2. kata, što se postiže uvjetom da izlaz brojača "KAT" bude različit od 10. Lift će se spuštati:

- Ako je pritisnuta tipka G2, a lift se nalazi na 3. katu "P_G2K3"
- Ako je pritisnuta tipka D2, a lift se nalazi na 3. katu "P_D2K3"
- Ako se lift nalazi na 3. katu i u liftu je pritisnuta tipka za 2. kat
- Zadnji uvjet je povratna veza kako bi se lift nastavio spuštati sve dok ne dođe do 2. kata ako se neki od početnih uvjeta isključio budući da se radi o tipkama, a ne prekidačima.

Slika 4.13: Network 19

Network 20 (Slika 4.14) je skup uvjeta koji služi za dizanje lifta do 2. kata, što se postiže uvjetom da izlaz brojača "KAT" bude različit od 10. Lift će se dizati:

- Ako se lift nalazi na 1. katu i u liftu je pritisnuta tipka za 2. kat
- Ako je pritisnuta tipka G2, a lift se nalazi na 1. katu "P_G2K1"
- Ako je pritisnuta tipka D2, a lift se nalazi na 1. katu "P_D2K1"
- Zadnji uvjet je povratna veza kako bi se lift nastavio dizati sve dok ne dođe do 2. kata ako se neki od početnih uvjeta isključio.

Slika 4.14: Network 20

Network 21 (Slika 4.15) skup uvjeta koje služe za dizanje lifta do 3. kata, što se postiže uvjetom da izlaz brojač "KAT" bude različit od 20. Lift će se dizati pod uvjetima:

- Da se lift nalazi na 2. katu te je pritisnuta jedna od tipkala za poziv lifta na 3. kat
- Ako se lift nalazi na 1. katu i unutar lifta je pritisnuta tipka za 3. kat ili je uz tipku za poziv lifta na 3. kat pritisnuta jedna od tipkala za poziv na 2. kat
- Ako je pritisnuta tipka D3, a lift se nalazi na 1.katu "P_D3K1"
- Ako je pritisnuta tipka D3, a lift se nalazi na 2. katu "P_D3K2"
- Zadnji uvjet služi kao povratna veza iste varijable kako bi nastavila sa radom ako se uvjet koji je uključio pomoćnu varijablu "DIZANJE 3" isključio.

Slika 4.15: Network 21

Networku 22 (Slika 4.16) i 23 (Slika 4.17) služe za prikupljanje svih uvjeta za dizanje i spuštanje lifta uključujući da se lift ne može istovremeno i spuštat i dizat, vrata lifta moraju biti zatvorena i motor ne smije biti u kvaru. Ti uvjeti upravljaju pomoćnim varijablama "SPUSTANJE_2" i "DIZANJE_2", te se u Networku 24 (Slika 4.18) i 25 (Slika 4.19) tim pomoćnim varijablama upravljaju izlazi na koje bi se spajao motor i tim se varijablama u Networku 27 (Slika 4.20) upravlja brojač.

Slika 4.17: Network 23

Slika 4.19: Network 25

U Networku 27 (Slika 4.20) se nalazi brojač kojim simuliramo motor na način da kada se lift diže brojač svake sekunde povećava broj za 1, a kada se lift spušta onda svake sekunde smanjuje broj za 1. Vrijednost brojača se sprema u pomoćnu varijablu "KAT".

Slika 4.20: Network 27

U Networku 28 do 33 (Slike 4.21, 4.22, 4.23, 4.24, 4.25, 4.26) se upravlja otvaranje vrata. U Networku 28 su postavljeni uvjeti koji će uključiti timer od 2 sekunde za otvaranje vrata. Vrata će se otvarati:

- Kada lift dođe na prvi kat
- Kada lift dođe na drugi kat i bila je pritisnuta jedna od tipkala za poziv lifta na 2. kat
- Kada dođe na treći kat
- Kada se pritisne tipka "Reset".

Timer iz Networka 28 se postavlja kao uvjet za otvaranje vrata u Networku 32 (Slika 4.25), a kada timer završi sa odbrojavanjem u Networku 33 se uključuje pomoćna varijabla "VR_OTV" što znači da su vrata lifta otvorena. Vrata se također mogu otvoriti kada se lift nalazi na nekom od katova pritiskom na tipku unutar lifta za otvaranje vrata, to se omogućuje u Networku 29 (Slika 4.22), 30 (Slika 4.23) i 31 (Slika 4.24). U Networku 30 se pomoću tipke u liftu za otvaranje vrata, pomoćna varijabla "Tipka_OTV_VR", upravlja varijablom "SR_tip_OTV_VR", ali samo ako se lift nalazi na nekom od katova, a ne ako se nalazi između katova. Pomoćna varijabla "SR tip OTV VR" se isključi ako je lift između katova, ako je uključen timer u Networku 31,

ako je pritisnuta tipka u liftu za zatvaranje vrata, pomoćna varijabla "Tipka_ZATV_VR"i ako je pritisnuta tipka "Reset". Pomoćnom varijablom "SR_tip_OTV_VR" se u Networku 31 uključuje timer od 2 sekunde kojim se u Networku 32 započinje otvaranje vrata lifta.

Slika 4.21: Network 28

Slika 4.22: Network 29

Slika 4.24: Network 31

Slika 4.25: Network 32

Slika 4.26: Network 33

Networkom 34 (Slika 4.27), 35 (Slika 4.28) i 36 (Slika 4.29) se upravlja zatvaranje vrata lifta. U Networku 36 su postavljeni svi uvjeti kada će se uključiti timer kojim se u Networku 35 uključuje pomoćna varijabla za zatvaranje vrata lifta, te nakon što se isključi timer iz Networka 34 uključiti će se pomoćna varijabla da su vrata lifta zatvorena u Networku 36.

Slika 4.27: Network 34

Slika 4.29: Network 36

Za simulaciju otvaranja i zatvaranja vrata na HMI ekranu pod nazivom "Izvan lifta" napravljene su slike koje su postavljene jedna na drugu, ali se izmjenjuju uključivanjem i isključivanjem pomoćnih varijabli u Networku 37 do 48. Npr. u Networku 37 (Slika 4.30) kada se lift nalazi na 3. katu i uključena je pomoćna varijabla da su vrata otvorena "VR_OTV" otvorit će se samo vrata na 3. katu, a na ostalim katovima će biti prikazana zatvorena vrata. U Networku 48 (Slika 4.31) na prvom katu će biti prikazana zatvorena vrata kada se lift ne nalazi na prvom katu i ako vrata nisu otvorena jer ne mogu vrata u isto vrijeme biti i otvorena i zatvorena.

Slika 4.39: Network 37

Slika 4.31: Network 48

Networkom 26 (Slika 4.32), 49 (Slika 4.33) i 50 (Slika 4.34) se želi simulirati prekoračenje dopuštene težine u liftu pomoću tipki F8 i F7 na HMI ekranu. U Networku 26, alarm će se aktivirati ako lift nije u pokretu i pritisnuta je tipka F8 na HMI ekranu, dok će se isključiti tipkom F7 na HMI ekranu u Networku 49. U Networku 50 će se uključiti lampica prikazana na HMI ekranima za signalizaciju prekoračene dopuštene težine.

Slika 4.33: Network 49

Network 50:	
Comment	
%M10.4	%M10.3
"SR_Alarm_	"Lampica_
tezina"	Alarm_težina
	()

Slika 4.34: Network 50

Networkom 51 (Slika 4.35) provjerava se rad motora tj. brojača ako je broj u brojaču manji od 0 ili veći od 20 ili ako se pritisne tipka "Motor u kvaru" uključiti će se pomoćna varijabla "Kvar_motora" koja se koristi u Networku 22 (Slika 4.16) i 23 (Slika 4.17) kako se lift ne bi kretao dok je motor u kvaru. Kako se pomoćna varijabla isključila, u Network-u 55 (Slika 4.36), može se koristiti tipka "Motor u kvaru OFF" na HMI zaslonu ili ako se pritisne tipka "Reset".

Slika 4.35: Network 51

Slika 4.36: Network 55

Network 52 (Slika 4.37) i 53 (Slika 4.38) služe za uključivanje i isključivanje pomoćne varijable "SR_IDI_K2" koja će se uključiti pritiskom na jednu od tri tipke za poziv lifta na 2. kat, a isključiti će se kada je lift na 2. katu.

Slika 4.38: Network 53

Network 54 (Slika 4.39) se koristi za resetiranje pomoćnih varijabli pomoću tipke "Reset" na HMI ekranu.

Slika 4.39:Network 54

Kako bi program radio i na maketi, u Networku-u 56 (Slika 4.40), 57 i 58 se koriste ulazi "S1", "S2" i "S3", označavaju senzor na određenom katu. Npr. u Network-u 56 ulaz "S1" će se uključiti ako se lift nalazi na 1. katu te će naredbom "MOVE" prenijeti vrijednost "0" na brojač.

Slika 4.40: Network 56

5. Zaključak

Korištenjem simulatora PLC-a i HMI dodirnog zaslona znatno je olakšana izrada ovog završnog rada. HMI zaslonom je izrađena simulacija lifta, njegovo korištenje je olakšalo spajanje makete, te izradu makete budući da su tipkala, lampice, vrata prikazana na njemu umjesto da se nalaze, kao ostala korištena oprema, na maketi. Simulacijom na HMI ekranu se brže i lakše moglo testirati rad programa koji je kada je bio dovršen testiran i na maketi lifta. Pomoću programa Solidworks izrađen je 3D model makete na kojoj su se mogli planirati položaji ostale korištene opreme i dijelova koji su bili potrebni za samu izradu makete. Tijekom testiranja makete lifta utvrđeno je da zbog malih dimenzija osovine motora teško je bilo napraviti precizan spoj između motora i navojne šipke. Moguća poboljšanja makete lifta su izrada automatizacije vrata na maketi, postavljanje tipkala i ekrana, za prikaz kata na kojem se lift nalazi, na maketu kako bi se HMI zaslonom moglo upravljati samo iz lifta, te dodati još katova u simulaciju.

6. Literatura

- E. Kolaković: Programabilni logički kontroleri, Završni rad, Sveučilište u Rijeci, Rijeka, 2022.
- [2] G. Miletić: Automatizacija navodnjavanja pomoću PLC uređaja, Završni rad, Veleučilište u Karlovcu, Karlovac, 2022.
- [3] <u>https://automatismosmundo.com/en/logo-from-siemens-what-is-it-really-a-plc/</u>, dostupno 08.02.2022.
- [4] V. Šimundić: Upravljanje dizalom pomoću programirljivog logičkog kontrolera, Završni rad, FERIT, Osijek, 2019.
- [5] G. Maličić: Programirljivi logički kontroleri, TVZ, Zagreb
- [6] https://www.solisplc.com/tutorials/statement-list-stl-programming-in-siemens-tia-portal
- [7] https://amatrol.com/product/plc-statement-list-ebooks/
- [8] <u>https://www.researchgate.net/figure/Shows-the-statement-list-STL-for-the-irrigation-system_fig8_232722485</u>, dostupno 09.2012.
- [9] <u>https://www.plcacademy.com/function-block-diagram-programming/</u>, dostupno 13.03.2018.
- [10] M. Šošić: Upravljanje servo motorom pomoću PLC-a i HMI dodirnog zaslona, Završni rad, Sveučilište Sjever, Varaždin, 2018.
- [11] J. Srpak, Automatizacija strojeva i uređaja Ulazni elementi sustava automatizacije, predavanje 3, Sveučilište Sjever, Varaždin
- [12] https://www.rfwireless-world.com/Terminology/Advantages-and-disadvantages-of-Inductive-Sensor.html
- [13] <u>https://www.amazon.de/</u> (Gebildet 8 mm induktivni senzor blizine koji detektira udaljenost senzor blizine cilindrični prekidač blizine PNP NO (normalno otvoren) DC 6-36V 300mA 3-žilni LJ18A3-8-Z/BY (promjer 18 mm))
- [14] https://au.rs-online.com/web/generalDisplay.html?id=ideas-and-advice/dc-motors-guide
- [15] https://www.magneticinnovations.com/faq/dc-motor-how-it-works/
- [16] https://www.gainesvilleindustrial.com/blog/ac-dc-motors/
- [17] <u>https://www.amazon.de/</u> (Motor s mini metalnim zupčanikom 6V mikro reduktor brzine s 3mm osovinom za robotski kotač (6V 15RPM))
- [18] https://www.technia.com/blog/what-is-solidworks/
- [19] https://www.eplan.hr/
- [20] P. Lončar: Projektiranje u programskom paketu EPLAN electric, Završni rad, FERIT, Osijek

Popis slika

Slika 2.1: Automatizacija relejnom logikom [3]	2
Slika 2.2: Dijelovi PLC-a [5]	3
Slika 2.3: Ciklus rada PLC uređaja [5]	4
Slika 2.4: Korišteni PLC S7-1200	4
Slika 2.5: Usporedba strujne sheme i ljestvičastog dijagrama [5]	6
Slika 2.6: Primjer STL programskog jezika [8]	6
Slika 2.7: Funkcijski blok ILI [9]	7
Slika 2.8:HMI dodirni zaslon KTP700 Basic	8
Slika 2.9: Dijelovi induktivnog senzora [11]	9
Slika 2.10: Korišteni induktivni senzor, NO	9
Slika 2.11: Korišteni istosmjerni motor [17]	10
Slika 3.1: Izgled korisničkog sučelja STEP 7	12
Slika 3.2: Izgled korisničkog sučelja WinCC	13
Slika 3.3: Model prednjeg dijela kućišta	15
Slika 3.4: Model postolja kućišta	15
Slika 3.5: Model lijevog dijela kućišta	16
Slika 3.6: Model desnog dijela kućišta	16
Slika 3.7: Model gornjeg dijela kućišta	17
Slika 3.8: Model vrata na katovima	17
Slika 3.9: Modeli dodataka za držanje vrata	18
Slika 3.10: Model postolja i gornje strane lifta	18
Slika 3.11: Model strana lifta	19
Slika 3.12: Model držača motora	19
Slika 3.13: Model dijela za spajanje motora sa navojnom šipkom	19
Slika 3.14: Model navojne šipke	20
Slika 3.15: Model metalne šipke za stabilizaciju lifta	21
Slika 3.16: Prikaz 3D modela makete lifta	21
Slika 3.17: Prikaz izrađene makete lifta	22
Slika 3.18: Plan rezanja dijelova makete lifta	22
Slika 3.19: Shema spajanja makete lifta	23
Slika 4.1: Početni ekran HMI ekrana	27
Slika 4.2: HMI ekran "Izvan lifta"	
Slika 4.3: HMI ekran "U liftu"	29

Slika 4.4: Network 1	30
Slika 4.5: Network 5	30
Slika 4.6: Network 6	31
Slika 4.7: Network 7	31
Slika 4.8: Network 12	31
Slika 4.9: Network 8	32
Slika 4.10: Network 9	32
Slika 4.11: Network 10	32
Slika 4.12: Network 18	
Slika 4.13: Network 19	34
Slika 4.14: Network 20	
Slika 4.15: Network 21	35
Slika 4.16: Network 22	
Slika 4.17: Network 23	
Slika 4.18: Network 24	
Slika 4.19: Network 25	
Slika 4.20: Network 27	
Slika 4.21: Network 28	
Slika 4.22: Network 29	
Slika 4.23: Network 30	
Slika 4.24: Network 31	
Slika 4.25: Network 32	
Slika 4.26: Network 33	
Slika 4.27: Network 34	40
Slika 4.28: Network 35	41
Slika 4.29: Network 36	41
Slika 4.39: Network 37	41
Slika 4.31: Network 48	42
Slika 4.32: Network 26	42
Slika 4.33: Network 49	42
Slika 4.34: Network 50	43
Slika 4.35: Network 51	43
Slika 4.36: Network 55	43
Slika 4.37: Network 52	44
Slika 4.38: Network 53	44
	49

Slika 4.39:Network 54	45
Slika 4.40: Network 56	45

Popis tablica

Tablica 4.1: Popis ulaznih varijabli PLC-a	24
Tablica 4.2: Popis izlaznih varijabli PLC-a	24
Tablica 4.3: Popis pomoćnih varijabli PLC-a	27

Prilozi

Shema spajanja makete lifta

Radionički crteži dijelova makete lifta:

Čelična šipka

Desna strana kućišta

Dio za spajanje motora

Dodatak za držanje vrata 1

Dodatak za držanje vrata 2

Držač motora

Gornja donja strana lifta

Gornja strana kućišta

Lijeva strana kućišta

Navojna šipka

Postolje kućišta

Prednja strana kućišta

Strane lifta

Vrata

Sklopni crtež makete lifta

Plan rezanja

6

G

3

4

Popis dijelova											
Br.	Naziv dijela			Naziv datoteke		Količ	ina	Materijal	Masa [g]	E	
1	Postolje kućišta		Postolje_kućišta		1		Pleksiglas 1179.55				
2	Prednja strana kućišta		Prednja_strana_kući šta		1		Pleksiglas	824.67			
3	Lijeva strana kućišta		Lijeva_strana_kućišt a		1		Pleksiglas	623.93	D		
4	Desna strana kućišta			Desna_strana_kućišt a		1		Pleksiglas			608.16
5	Gornja strana kućišta			Gornja_strana_kućiš ta		1		Pleksiglas			481.61
6	Drugi dodatak za držanje vrata		Dodatak_za_držanj e_vrata_2		3		Pleksiglas	21.42			
7	Vrata			Vrata		3		Pleksiglas	70.24		
8	Prvi dodatak za držanje vrata		Dodatak_za_držanj e_vrata_1		3		Pleksiglas 8.93				
9	Čelična šipka		Čelična_šipka		1		Čelik	277.72			
10	Navojna šipka		Navojna_šipka		1	Čelik 277		277.72			
11	Držać motora		Držač_motora		1		ABS	7.43			
12	Dio za spajanje motora		Dio_za_spajanje_m otora		1		ABS	0.44			
13	Gornja donja strana lifta		Gornja_donja_stran a_lifta		2		ABS	48.68	В		
14	Strane I	ane lifta		Strane_lifta		2		ABS	28.90		
Do		Datum		lme i prezime		Potpis			•		
Konstruirao		21/08/2023		Maja Radovanović		MR					
Crtao		21/08/2023	/2023 Maja Radovanović		MR		Varaždin				
Odobrio		21/08/2023					~			Α	
							Škol. god.: 3 Semestar: V		Semestar: VI		
erilo: 1:5		Naziv sklopa: MAKETA IITTA Naziv datoteke: Sklopni_crtež_makete_lifta					Masa (g): 4738.16 Broj crteża:				
4		3					2		1	-	

đ

.5

HARON ALISTERAING

Sveučilište Sjever

VE KO

AVEUŽILIŠTE BJEVER

IZJAVA O AUTORSTVU

Završni/diplomski rad isključivo je autorsko djelo studenta koji je isti izradio te student odgovara za istinitost, izvornost i ispravnost teksta rada. U radu se ne smiju koristiti dijelovi tudih radova (knjiga, članaka, doktorskih disertacija, magistarskih radova, izvora s interneta, i drugih izvora) bez navođenja izvora i autora navedenih radova. Svi dijelovi tuđih radova moraju biti pravilno navedeni i citirani. Dijelovi tuđih radova koji nisu pravilno citirani, smatraju se plagijatom, odnosno nezakonitim prisvajanjem tuđeg znanstvenog ili stručnoga rada. Sukladno navedenom studenti su dužni potpisati izjavu o autorstvu rada.

Ja, <u>Maja Radovanović</u> (*ime i prezime*) pod punom moralnom, materijalnom i kaznenom odgovornošću, izjavljujem da sam isključivi autor/ica završnog/diplomskog (*obrisati nepotrebno*) rada pod naslovom Izrada makete dizala upravljane pomoću PLC-a i HMI dodimog zaslona (*upisati naslov*) te da u navedenom radu nisu na nedozvoljeni način (bez pravilnog citiranja) korišteni dijelovi tuđih radova.

> Student/ica: (upisati ime i prezime) MAJA RADOVANOVIC

> > (vlastoručni potpis)

2 -

Sukladno čl. 83. Zakonu o znanstvenoj djelatnost i visokom obrazovanju završne/diplomske radove sveučilišta su dužna trajno objaviti na javnoj internetskoj bazi sveučilišne knjižnice u sastavu sveučilišta te kopirati u javnu internetsku bazu završnih/diplomskih radova Nacionalne i sveučilišne knjižnice. Završni radovi istovrsnih umjetničkih studija koji se realiziraju kroz umjetnička ostvarenja objavljuju se na odgovarajući način.

Sukladno čl. 111. Zakona o autorskom pravu i srodnim pravima student se ne može protiviti da se njegov završni rad stvoren na bilo kojem studiju na visokom učilištu učini dostupnim javnosti na odgovarajućoj javnoj mrežnoj bazi sveučilišne knjižnice, knjižnice sastavnice sveučilišta, knjižnice veleučilišta ili visoke škole i/ili na javnoj mrežnoj bazi završnih radova Nacionalne i sveučilišne knjižnice, sukladno zakonu kojim se uređuje znanstvena i umjetnička djelatnost i visoko obrazovanje.